A Crystal Plasticity Model for Dynamic Recrystallization in Ti-6Al-4V Alloy

Author(s):  
A. Roy ◽  
V. Sundararaghavan
2016 ◽  
Vol 725 ◽  
pp. 243-248
Author(s):  
Yuichi Kimura ◽  
Sho Kujirai ◽  
Ryo Ueta ◽  
Kazuyuki Shizawa

Magnesium alloy with Long-Period Stacking Ordered Structure (LPSO) and α-Mg (ordinary HCP structure) phase is expected for a new structural material due to its excellent mechanical properties. Its materials strengthening arises from the kink band formation in LPSO phase and the grain refinement of α-Mg phase in the vicinity of LPSO phase because of recrystallization. In the present study, a multiscale and multiphysics computation for the dynamic recrystallization in α-Mg phase is carried out by coupling the dislocation-based crystal plasticity model for HCP crystals proposed previously by the authors with the multi-phase field model through dislocation density. In the present model, not only the environmental temperature-dependences of nucleation and nucleus growth but also a pinning effect of boundary migration of recrystallized grain boundary owing to existence and influence of additive elements are newly taken into account. Furthermore, grain size behaviors of recrystallized nuclei are investigated for various volume fractions of additive element and ratios of grain boundary segregation.


2021 ◽  
Author(s):  
Artyom A. Tokarev ◽  
Anton Yu. Yants ◽  
Alexey I. Shveykin ◽  
Nikita S. Kondratiev

2011 ◽  
Vol 702-703 ◽  
pp. 204-207 ◽  
Author(s):  
Young Ung Jeong ◽  
Frédéric Barlat ◽  
Myoung Gyu Lee

The flow stress behavior of a bake-hardenable steel during a few simple shear cycles is investigated using a crystal plasticity model. The simple shear test provides a stable way to reverse the loading direction. Stress reversals were accompanied with a lower yield stress, i.e., the Bauschinger effect, followed by a transient hardening stage with a plateau region and, permanent softening. The origins of these three distinct stages are discussed using a crystal plasticity model. To this end, the representative discrete grain set is tuned to capture such behavior by coupling slip system hardening appropriately. The simulated results are compared with experimental forward-reverse simple shear stress-strain curves. It is shown that the characteristic flow stress stages are linked to texture evolution and to the Bauschinger effect acting on the different slip systems.


Sign in / Sign up

Export Citation Format

Share Document