scholarly journals Critical value of volume ignition and condition of nonequilibriem burning of DT in inertial confinement fusion

2015 ◽  
Vol 64 (4) ◽  
pp. 045205
Author(s):  
Zhao Ying-Kui ◽  
Ouyang Bei-Yao ◽  
Wen Wu ◽  
Wang Min
1996 ◽  
Author(s):  
H. Hora ◽  
S. Eliezer ◽  
J. J. Honrubia ◽  
R. Höpfl ◽  
J. M. Martinez-Val ◽  
...  

1988 ◽  
Vol 6 (2) ◽  
pp. 163-182 ◽  
Author(s):  
L. Cicchitelli ◽  
S. Eliezer ◽  
M. P. Goldsworthy ◽  
F. Green ◽  
H. Hora ◽  
...  

The realization of an ideal volume compression of laser-irradiated fusion pellets (by C. Yamanaka) opens the possibility for an alternative to spark ignition proposed for many years for inertial confinement fusion. A re-evaluation of the difficulties of the central spark ignition of laser driven pellets is given. The alternative volume compression theory, together with volume burn and volume ignition (discovered in 1977), have received less attention and are re-evaluated in view of the experimental verification by Yamanaka, generalized fusion gain formulas, and the variation of optimum temperatures derived at self-ignition. Reactor-level DT fusion with MJ-laser pulses and volume compression to 50 times the solid-state density are estimated. Dynamic electric fields and double layers at the surface and in the interior of plasmas result in new phenomena for the acceleration of thermal electrons to suprathermal electrons. Double layers also cause a surface tension which stabilizes against surface wave effects and Rayleigh–Taylor instabilities.


1994 ◽  
Vol 12 (4) ◽  
pp. 681-717 ◽  
Author(s):  
J.M. Martínez-Val ◽  
S. Eliezer ◽  
M. Piera

Inertial confinement fusion (ICF) targets can be imploded by heavy-ion beams (HIBs) in order to obtain a highly compressed fuel microsphere. The hydrodynamic efficiency of the compression can be optimized by tuning the ablation process in order to produce the total evaporation of the pusher material by the end of the implosion. Such pusherless compressions produce very highly compressed targets for relatively short confinement times. However, these times are long enough for a fusion burst to take place, and burnup fractions of 30% and higher can be obtained if the volume ignition requirements are met. Numerical simulations demonstrate that targets of 1-mg DT driven by a few MJ can yield energy gains of over 70. Although direct drive is used in these simulations, the main conclusions about volume ignition are also applicable to indirect drive.


1997 ◽  
Vol 15 (4) ◽  
pp. 565-574 ◽  
Author(s):  
Chr. Scheffel ◽  
R.J. Stening ◽  
H. Hora ◽  
R. Höpfl ◽  
J.M. Martinez-Val ◽  
...  

The very clean nuclear fusion reaction of hydrogen and boron-11 by inertial confinement arrives at conditions for power stations by volume ignition only at compressions to 100,000 times the solid state. The earlier (numerically) observed anomaly of decreasing gain at increasing density (retrograde behavior) is analyzed and the reason clarified: the strong stopping power mechanism, based on Gabor's collective model, is reaching its limit of too small Debye lengths at the extremely high densities because of the optimum temperature in the range of 30 keV due to the reabsorption of the bremsstrahlung. The relativistic correction of the bremsstrahlung for the always much higher temperatures after volume ignition is included from Maxon's model.


1992 ◽  
Vol 10 (1) ◽  
pp. 145-154 ◽  
Author(s):  
P. Pieruschka ◽  
L. Cicchitelli ◽  
R. Khoda-Bakhsh ◽  
E. Kuhn ◽  
G. H. Miley ◽  
...  

Since DT laser fusion with 10-MJ laser pulses for 1000-MJ output now offers the physics solution for an economical fusion energy reactor, the conditions are evaluated assuming that controlled ICF reactions will become possible in the future using clean nuclear fusion fuel such as deuterium-helium(3) or hydrogen-boron(11). Using the transparent physics mechanisms of volume ignition of the fuel capsules, we show that the volume ignition for strong reduction of the optimum initial temperature can be reached for both types of fuels if a compression about 100 times higher than those in present-day laser compression experiments is attained in the future. Helium(3) laser-pulse energies are then in the same range as for DT, but ten times higher energies will be required for hydrogenboron(11).


2003 ◽  
Vol 69 (5) ◽  
pp. 413-429 ◽  
Author(s):  
H. HORA ◽  
G. H. MILEY ◽  
F. OSMAN ◽  
P. EVANS ◽  
P. TOUPS ◽  
...  

Compression of plasmas with laser pulses in the 10-kJ range produced densities in the range of 1000 times that of the solid state, where however the temperatures within a few hundred eV were rather low. This induced the fast ignitor scheme for central or peripheral deposition of some 10-kJ ps laser pulses on conventional $n_{\rm s}$-precompressed DT plasma of 3000 times solid-state density. We present results where the ps ignition is avoided and only a single-event conventional compression is used. Following our computations of volume ignition and the excellent agreement with measured highest fusion gains of volume compression, we found conditions where compression to 5000 times that of the solid state and by using laser pulses of 10 MJ produce volume ignition with temperatures between 400 and 800 eV only for high-gain volume ignition.


Sign in / Sign up

Export Citation Format

Share Document