In silico evolution of transferable genetic elements

Author(s):  
Dusan Misevic ◽  
◽  
Antoine Frènoy ◽  
François Taddei
2016 ◽  
Vol 25 (5) ◽  
pp. 1027-1031 ◽  
Author(s):  
Irina R. Arkhipova ◽  
Phoebe A. Rice

Lab on a Chip ◽  
2013 ◽  
Vol 13 (14) ◽  
pp. 2827 ◽  
Author(s):  
Takuya Sunagawa ◽  
Akihito Tanahashi ◽  
Matthew E. Downs ◽  
Henry Hess ◽  
Takahiro Nitta

2021 ◽  
Author(s):  
Sergio Mascarenhas Morgado ◽  
Ana Carolina Paulo Vicente

The mobilome plays a crucial role in bacterial adaptation and is therefore a starting point to understand and establish the gene flow occurring in the process of bacterial evolution. This is even more so if we consider that the mobilome of environmental bacteria can be the reservoir of genes that may later appear in the clinic. Recently, new genera have been proposed in the family Mycobacteriaceae , including the genus Mycolicibacterium , which encompasses dozens of species of agricultural, biotechnological, clinical and ecological importance, being ubiquitous in several environments. The current scenario in the Mycobacteriaceae mobilome has some bias because most of the characterized mycobacteriophages were isolated using a single host strain, and the few plasmids reported mainly relate to the genus Mycobacterium . To fill in the gaps in these issues, we performed a systematic in silico study of these mobile elements based on 242 available genomes of the genus Mycolicibacterium . The analyses identified 156 putative plasmids (19 conjugative, 45 mobilizable and 92 non-mobilizable) and 566 prophages in 86 and 229 genomes, respectively. Moreover, a contig was characterized by resembling an actinomycete integrative and conjugative element (AICE). Within this diversity of mobile genetic elements, there is a pool of genes associated with several canonical functions, in addition to adaptive traits, such as virulence and resistance to antibiotics and metals (mercury and arsenic). The type-VII secretion system was a common feature in the predicted plasmids, being associated with genes encoding virulent proteins (EsxA, EsxB, PE and PPE). In addition to the characterization of plasmids and prophages of the family Mycobacteriaceae , this study showed an abundance of these genetic elements in a dozen species of the genus Mycolicibacterium .


Pathogens ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 22 ◽  
Author(s):  
Virginie Libante ◽  
Yves Nombre ◽  
Charles Coluzzi ◽  
Johan Staub ◽  
Gérard Guédon ◽  
...  

Streptococcus suis is a zoonotic pathogen suspected to be a reservoir of antimicrobial resistance (AMR) genes. The genomes of 214 strains of 27 serotypes were screened for AMR genes and chromosomal Mobile Genetic Elements (MGEs), in particular Integrative Conjugative Elements (ICEs) and Integrative Mobilizable Elements (IMEs). The functionality of two ICEs that host IMEs carrying AMR genes was investigated by excision tests and conjugation experiments. In silico search revealed 416 ICE-related and 457 IME-related elements. These MGEs exhibit an impressive diversity and plasticity with tandem accretions, integration of ICEs or IMEs inside ICEs and recombination between the elements. All of the detected 393 AMR genes are carried by MGEs. As previously described, ICEs are major vehicles of AMR genes in S. suis. Tn5252-related ICEs also appear to carry bacteriocin clusters. Furthermore, whereas the association of IME-AMR genes has never been described in S. suis, we found that most AMR genes are actually carried by IMEs. The autonomous transfer of an ICE to another bacterial species (Streptococcus thermophilus)—leading to the cis-mobilization of an IME carrying tet(O)—was obtained. These results show that besides ICEs, IMEs likely play a major role in the dissemination of AMR genes in S. suis.


Sign in / Sign up

Export Citation Format

Share Document