scholarly journals Comprehensive in silico survey of the Mycolicibacterium mobilome reveals an as yet underexplored diversity

2021 ◽  
Author(s):  
Sergio Mascarenhas Morgado ◽  
Ana Carolina Paulo Vicente

The mobilome plays a crucial role in bacterial adaptation and is therefore a starting point to understand and establish the gene flow occurring in the process of bacterial evolution. This is even more so if we consider that the mobilome of environmental bacteria can be the reservoir of genes that may later appear in the clinic. Recently, new genera have been proposed in the family Mycobacteriaceae , including the genus Mycolicibacterium , which encompasses dozens of species of agricultural, biotechnological, clinical and ecological importance, being ubiquitous in several environments. The current scenario in the Mycobacteriaceae mobilome has some bias because most of the characterized mycobacteriophages were isolated using a single host strain, and the few plasmids reported mainly relate to the genus Mycobacterium . To fill in the gaps in these issues, we performed a systematic in silico study of these mobile elements based on 242 available genomes of the genus Mycolicibacterium . The analyses identified 156 putative plasmids (19 conjugative, 45 mobilizable and 92 non-mobilizable) and 566 prophages in 86 and 229 genomes, respectively. Moreover, a contig was characterized by resembling an actinomycete integrative and conjugative element (AICE). Within this diversity of mobile genetic elements, there is a pool of genes associated with several canonical functions, in addition to adaptive traits, such as virulence and resistance to antibiotics and metals (mercury and arsenic). The type-VII secretion system was a common feature in the predicted plasmids, being associated with genes encoding virulent proteins (EsxA, EsxB, PE and PPE). In addition to the characterization of plasmids and prophages of the family Mycobacteriaceae , this study showed an abundance of these genetic elements in a dozen species of the genus Mycolicibacterium .

2020 ◽  
Vol 70 (8) ◽  
pp. 4425-4431 ◽  
Author(s):  
Shaoxing Chen ◽  
Yao Xu ◽  
Siqi Sun ◽  
Jingwen Liu ◽  
Feilong Chen

A halophilic archaeon, strain H22T, was isolated from a subterranean salt deposit sampled at Yunnan salt mine, PR China. Colonies of strain H22T were light pink-pigmented. Cells were coccus, non-motile, Gram-stain-negative, and did not lyse in distilled water. The strain was aerobic and grew at 20–55 °C (optimum, 37 °C), in the presence of 10–30 % (w/v) NaCl (20 %) and at pH 6.5–9.0 (pH 7.0). Mg2+ was required for growth (optimum, 0.005 M). Major polar lipids were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester and sulfated mannosyl-glucosyl-glycerol diether-1. Sequence similarity search based on the multiple 16S rRNA genes (rrnA, rrnB and rrnC) of strain H22T revealed that it was most closely related to species of the genera Haloarchaeobius , Haladaptatus , Halorussus and Halorubellus with relative low sequence similarities (91.9–93.7 %). The strain, however, shared highest rpoB′ gene sequence identities with Halorussus rarus TBN4T (90.8 % rpoB′ gene sequence similarity). Phylogenetic trees based on 16S rRNA and rpoB′ gene sequences revealed a robust lineage of the strain H22T with members of related genera of the family Halobacteriaceae . The DNA G+C content of strain H22T was 62.9 mol%. Genome-based analysis of average nucleotide identity (ANI) and in silico DNA–DNA hybridization (DDH) between strains H22T and its closest relative were equal or lower than 77.7 and 22.4 %, respectively, which were far below the threshold for delineation of a new species. Based on ANI values, in silico DDH, and distinct morphological and physiological differences from the previously described taxa, we suggest that strain H22T represents a novel species of a new genus within the family Halobacteriaceae , for which the name Halomicrococcus hydrotolerans gen. nov., sp. nov. is proposed. The type strain is H22T (=CGMCC 1.16291T=NBRC 113231T).


2020 ◽  
Vol 6 (7) ◽  
Author(s):  
Sergio Mascarenhas Morgado ◽  
Ana Carolina Paulo Vicente

Mobile genetic elements (MGEs) are agents of bacterial evolution and adaptation. Genome sequencing provides an unbiased approach that has revealed an abundance of MGEs in prokaryotes, mainly plasmids and integrative conjugative elements. Nevertheless, many mobilomes, particularly those from environmental bacteria, remain underexplored despite their representing a reservoir of genes that can later emerge in the clinic. Here, we explored the mobilome of the Mycobacteriaceae family, focusing on strains from Brazilian Atlantic Forest soil. Novel Mycolicibacterium and Mycobacteroides strains were identified, with the former ones harbouring linear and circular plasmids encoding the specialized type-VII secretion system (T7SS) and mobility-associated genes. In addition, we also identified a T4SS-mediated integrative conjugative element (ICEMyc226) encoding two T7SSs and a number of xenobiotic degrading genes. Our study uncovers the diversity of the Mycobacteriaceae mobilome, providing the evidence of an ICE in this bacterial family. Moreover, the presence of T7SS genes in an ICE, as well as plasmids, highlights the role of these mobile genetic elements in the dispersion of T7SS.


Author(s):  
Atsuko Ueki ◽  
Akio Tonouchi ◽  
Nobuo Kaku ◽  
Katsuji Ueki

An obligately anaerobic bacterial strain (CTTWT) belonging to the family Lachnospiraceae within the class Clostridia was isolated from an anoxic soil sample subjected to biological or reductive soil disinfestation. Cells of the strain were Gram-stain-positive, short rods with peritrichous flagella. The strain was saccharolytic and decomposed polysaccharides, chitin, xylan and β-1,3-glucan. Strain CTTWT decomposed cell biomass and cell-wall preparations of an ascomycete plant pathogen, Fusarium oxysporum f. sp. spinaciae. The strain produced acetate, ethanol, H2 and CO2 as fermentation products from the utilized substrates. The major cellular fatty acids of the strain were C16 : 1 ω7c dimethylacetal (DMA), C16 : 0 DMA and C18 : 1 ω7c DMA. The closely related species of strain CTTWT based on the 16S rRNA gene sequences were species in the genus Anaerocolumna with sequence similarities of 95.2–97.6 %. Results of genome analyses of strain CTTWT indicated that the genome size of the strain was 5.62 Mb and the genomic DNA G+C content was 38.3 mol%. Six 16S rRNA genes with five different sequences from each other were found in the genome. Strain CTTWT had genes encoding chitinase, xylanase, cellulase, β-glucosidase and nitrogenase as characteristic genes in the genome. Homologous genes encoding these proteins were found in the genomes of the related Anaerocolumna species, but the genomic and phenotypic properties of strain CTTWT were distinct from them. Based on the phylogenetic, genomic and phenotypic analyses, the name Anaerocolumna chitinilytica sp. nov., in the family Lachnospiraceae is proposed for strain CTTWT (=NBRC 112102T=DSM 110036T).


Microbiology ◽  
2021 ◽  
Vol 167 (3) ◽  
Author(s):  
Kieran Bowran ◽  
Tracy Palmer

The type VII protein secretion system (T7SS) has been characterized in members of the phyla Actinobacteria and Firmicutes. In mycobacteria the T7SS is intimately linked with pathogenesis and intracellular survival, while in Firmicutes there is mounting evidence that the system plays a key role in interbacterial competition. A conserved membrane-bound ATPase protein, termed EssC in Staphylococcus aureus , is a critical component of the T7SS and is the primary receptor for substrate proteins. Genetic diversity in the essC gene of S. aureus has previously been reported, resulting in four protein variants that are linked to specific subsets of substrates. Here we have analysed the genetic diversity of the T7SS-encoding genes and substrate proteins across Listeria monocytogenes genome sequences. We find that there are seven EssC variants across the species that differ in their C-terminal region; each variant is correlated with a distinct subset of genes for likely substrate and accessory proteins. EssC1 is most common and is exclusively linked with polymorphic toxins harbouring a YeeF domain, whereas EssC5, EssC6 and EssC7 variants all code for an LXG domain protein adjacent to essC. Some essC1 variant strains encode an additional, truncated essC at their T7 gene cluster. The truncated EssC, comprising only the C-terminal half of the protein, matches the sequence of either EssC2, EssC3 or EssC4. In each case the truncated gene directly precedes a cluster of substrate/accessory protein genes acquired from the corresponding strain. Across L. monocytogenes strains we identified 40 LXG domain proteins, most of which are encoded at conserved genomic loci. These loci also harbour genes encoding immunity proteins and sometimes additional toxin fragments. Collectively our findings strongly suggest that the T7SS plays an important role in bacterial antagonism in this species.


Author(s):  
Sooyeon Park ◽  
Jung-Sook Lee ◽  
Wonyong Kim ◽  
Jung-Hoon Yoon

Two Gram-stain-negative and non-flagellated bacteria, YSTF-M3T and YSTF-M6T, were isolated from a tidal flat from Yellow Sea, Republic of Korea, and subjected to a polyphasic taxonomic study. Neighbour-joining phylogenetic tree of 16S rRNA gene sequences showed that strains YSTF-M3T and YSTF-M6T belong to the genera Kordia and Olleya of the family Flavobacteriaceae , respectively. The 16S rRNA gene sequence similarities between strain YSTF-M3T and the type strains of Kordia species and between strain YSTF-M6T and the type strains of Olleya species were 94.1–98.4 and 97.3–98.3 %, respectively. The ANI and dDDH values between genomic sequences of strain YSTF-M3T and the type strains of five Kordia species and between those of strain YSTF-M6T and the type strains of three Olleya species were in ranges of 77.0–83.2 and 20.7–27.1 % and 79.4–81.5 and 22.3–23.9 %, respectively. The DNA G+C contents of strain YSTF-M3T and YSTF-M6T from genomic sequences were 34.1 and 31.1 %, respectively. Both strains contained MK-6 as predominant menaquinone and phosphatidylethanolamine as only major phospholipid identified. Differential phenotypic properties, together with the phylogenetic and genetic distinctiveness, revealed that strains YSTF-M3T and YSTF-M6T are separated from recognized species of the genera Kordia and Olleya , respectively. On the basis of the data presented, strains YSTF-M3T (=KACC 21639T=NBRC 114499T) and YSTF-M6T (=KACC 21640T=NBRC 114500T) are considered to represent novel species of the genera Kordia and Olleya , respectively, for which the names Kordia aestuariivivens sp. nov. and Olleya sediminilitoris sp. nov. are proposed.


Author(s):  
Qing Liu ◽  
Lei-Lei Yang ◽  
Hong-Can Liu ◽  
Guo-Qing Zhang ◽  
Yu-Hua Xin

A novel Gram-stain-negative, rod-shaped, yellow bacterium, designated as LB1R16T, was isolated from the Laigu glacier on the Tibetan Plateau, PR China. Strain LB1R16T was catalase-positive, oxidase-negative and grew at 0–28 °C, pH 6.0–8.0 and in the absence of NaCl. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain LB1R16T belongs to the family Sphingosinicellaceae but formed an independent lineage. The highest level of 16S rRNA gene sequence similarities were found to Polymorphobacter arshaanensis DJ1R-1T (95.24 %), Sphingoaurantiacus capsulatus YLT33T (94.78 %) and Sandarakinorhabdus limnophila DSM 17366T (94.67 %). The genomic DNA G+C content was 68.8 mol%. The main cellular fatty acids were summed feature 8 (C18 : 1  ω7c/C18 : 1  ω6c), summed feature 3 (C16 : 1  ω7c/C16 : 1  ω6c), C16 : 0 and C12 : 0-OH. The respiratory quinone was ubiquinone-10. The polar lipids were phosphatidylethanolamine, phosphatidylglycerol, one sphingoglycolipid, one unidentified aminolipid, one unidentified phospholipid and two unidentified polar lipids, which were different from the type strains of Polymorphobacter arshaanensis , Sphingoaurantiacus capsulatus and Sandarakinorhabdus limnophila . Based on a polyphasic approach, a novel species of a new genus, Glacieibacterium frigidum gen. nov., sp. nov., within the family Sphingosinicellaceae is proposed. The type strain is LB1R16T (=CGMCC 1.11941T=NBRC 113873T).


Author(s):  
Shan Jiang ◽  
Feng-Bai Lian ◽  
You-Yang Sun ◽  
Xiao-Kui Zhang ◽  
Zong-Jun Du

A Gram-stain-negative, rod-shaped and facultatively aerobic bacterial strain, designated F7430T, was isolated from coastal sediment collected at Jingzi Wharf in Weihai, PR China. Cells of strain F7430T were 0.3–0.4 µm wide, 2.0–2.6 µm long, non-flagellated, non-motile and formed pale-beige colonies. Growth was observed at 4–40 °C (optimum, 30 °C), pH 6.0–9.0 (optimum, pH 7.5–8.0) and at NaCl concentrations of 1.0–10.0 % (w/v; optimum, 1.0 %). The sole respiratory quinone of strain F7430T was ubiquinone 8 and the predominant cellular fatty acids were summed feature 8 (C18 : 1  ω7c / C18 : 1  ω6c; 60.7 %), summed feature 3 (C16 : 1  ω7c/C16 : 1  ω6c; 30.2 %) and C15 : 0 iso (13.9 %). The polar lipids of strain F7430T consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylcholine, one unidentified phospholipid and three unidentified lipids. Results of 16S rRNA gene sequences analyses indicated that this strain belonged to the family Halieaceae and had high sequence similarities to Parahaliea aestuarii JCM 51547T (95.3 %) and Halioglobus pacificus DSM 27932T (95.2 %) followed by 92.9–95.0 % sequence similarities to other type species within the aforementioned family. The rpoB gene sequences analyses indicated that the novel strain had the highest sequence similarities to Parahaliea aestuarii JCM 51547T (82.2 %) and Parahaliea mediterranea DSM 21924T (82.2 %) followed by 75.2–80.5 % sequence similarities to other type species within this family. Phylogenetic analyses showed that strain F7430T constituted a monophyletic branch clearly separated from the other genera of family Halieaceae . Whole-genome sequencing of strain F7430T revealed a 3.3 Mbp genome size with a DNA G+C content of 52.6 mol%. The genome encoded diverse metabolic pathways including the Entner–Doudoroff pathway, assimilatory sulphate reduction and biosynthesis of dTDP-l-rhamnose. Based on results from the current polyphasic study, strain F7430T is proposed to represent a novel species of a new genus within the family Halieaceae , for which the name Sediminihaliea albiluteola gen. nov., sp. nov. is proposed. The type strain of the type species is F7430T (=KCTC 72873T=MCCC 1H00420T).


Author(s):  
Peter Schumann ◽  
Franziska Kalensee ◽  
Jialan Cao ◽  
Alexis Criscuolo ◽  
Dominique Clermont ◽  
...  

In the course of screening the surface soils of ancient copper mines and smelters (East Harz, Germany) an aerobic, non-motile and halotolerant actinobacterium forming small rods or cocci was isolated. The strain designated F300T developed creamy to yellow colonies on tryptone soy agar and grew optimally at 28 °C, pH 7–8 and with 0.5–2 % (m/v) NaCl. Its peptidoglycan was of type A4α l-Lys–l-Glu (A11.54). The menaquinone profile was dominated by MK-8(II, III-H4) and contained minor amounts of MK-8(H2), MK-8(H6) and MK-9(H4). The polar lipids comprised diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol, mono and diacylated phosphatidylinositol dimannosides, and components that were not fully characterized, including two phospholipids, two glycolipids and an uncharacterized lipid. Major whole-cell sugars were rhamnose and ribose. The fatty acid profile contained mainly iso and anteiso branched fatty acids (anteiso-C15 : 0, iso-C14 : 0) and aldehydes/dimethylacetals (i.e. not fatty acids). Sequence analysis of its genomic DNA and subsequent analysis of the data placed the isolate in the group currently defined by members of the genera Ruania and Haloactinobacterium (family Ruaniaceae , order Micrococcales ) as a sister taxon to the previously described species Haloactinobacterium glacieicola , sharing an average nucleotide identity and average amino acid identity values of 85.3 and 85.7 %, respectively. Genotypic and chemotaxonomic analyses support the view that strain F300T (=DSM 108350T=CIP 111667T) is the type strain of a new genus and new species for which the name Occultella aeris gen. nov., sp. nov. is proposed. Based on revised chemotaxonomic and additional genome based data, it is necessary to discuss and evaluate the results in the light of the classification and nomenclature of members of the family Ruaniaceae , i.e. the genera Haloactinobacterium and Ruania . Consequently, the reclassification of Haloactinobacterium glacieicola as Occultella glacieicola comb. nov. and Haloactinobacterium album as Ruania alba comb. nov., with an emended description of the genus Ruania are proposed.


Author(s):  
Hye Jeong Kang ◽  
Min-Kyeong Kim ◽  
Su Gwon Roh ◽  
Seung Bum Kim

A Gram-stain-negative, oxidase-positive, catalase-positive, aerobic, orange-pigmented, rod-shaped and non-motile bacterium designated strain MMS17-SY002T was isolated from island soil. The isolate grew at 20–37 °C (optimum, 30 °C), at pH 6.0–9.5 (optimum, pH 7) and in the presence of 0.5–4.0 % (w/v) NaCl (optimum, 2.0 %). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain MMS17-SY002T was mostly related to the genus Muriicola of the family Flavobacteriaceae and had highest sequence similarity of 96.82 % to Muriicola marianensis A6B8T and Muriicola jejuensis EM44T, but formed a distinct phylogenetic line within the genus. Chemotaxonomic analyses showed that menaquinone 6 was the predominant isoprenoid quinone, the major fatty acids were iso-C15 : 1 G and iso-C15 : 0, and the diagnostic polar lipid was phosphatidylethanolamine. The genomic DNA G+C content was 42.4 mol%. Strain MMS17-SY002T could be distinguished from related species by the combination of trypsin, α-chymotrypsin, acid phosphatase, naphthol-AS-BI-phosphohydrolase, α-galactosidase, β-galactosidase and β-glucosidase activities. The orthologous average nucleotide identity between the genomes of strain MMS17-SY002T and M. jejuensis and that between the strain and M. marianensis A6B8T were 73.26 and 73.33%, respectively, thus confirming the separation of the strain from related species at species level. Based on the phenotypic, phylogenetic, chemotaxonomic and genomic characterization, MMS17-SY002T should be recognized as a novel species of the genus Muriicola , for which the name Muriicola soli sp. nov. is proposed. The type strain is MMS17-SY002T (=KCTC 62790T=JCM 32370T).


2012 ◽  
Vol 62 (Pt_9) ◽  
pp. 2163-2168 ◽  
Author(s):  
Yong-Taek Jung ◽  
Ji-Hoon Kim ◽  
So-Jung Kang ◽  
Tae-Kwang Oh ◽  
Jung-Hoon Yoon

A Gram-staining-negative, non-flagellated, non-gliding and pleomorphic bacterial strain, designated DPG-25T, was isolated from seawater in a seaweed farm in the South Sea in Korea and its taxonomic position was investigated by using a polyphasic approach. Strain DPG-25T grew optimally at 25 °C, at pH 7.0–7.5 and in the presence of 2 % (w/v) NaCl. Flexirubin-type pigments were not produced. Phylogenetic analyses based on 16S rRNA gene sequences revealed that strain DPG-25T formed a cluster with the type strains of Actibacter sediminis , Aestuariicola saemankumensis and Lutimonas vermicola . Strain DPG-25T exhibited 16S rRNA gene sequence similarity values of 95.3, 93.1 and 93.6 % to the type strains of Actibacter sediminis , Aestuariicola saemankumensis and L. vermicola , respectively. Strain DPG-25T contained MK-6 as the predominant menaquinone and iso-C15 : 0 and iso-C17 : 0 3-OH as the major fatty acids. The major polar lipids detected in strain DPG-25T were phosphatidylethanolamine and one unidentified lipid. The DNA G+C content was 39.9 mol%. Differential phenotypic properties and the phylogenetic distinctiveness of strain DPG-25T demonstrated that this strain is distinguishable from Actibacter sediminis , Aestuariicola saemankumensis and L. vermicola . On the basis of the data presented here, strain DPG-25T represents a novel species in a novel genus of the family Flavobacteriaceae , for which the name Namhaeicola litoreus gen. nov., sp. nov. is proposed. The type strain of Namhaeicola litoreus is DPG-25T ( = KCTC 23702T  = CCUG 61485T).


Sign in / Sign up

Export Citation Format

Share Document