scholarly journals Cellular Automata Model Of Emergent Collective Bi-Directional Pedestrian Dynamics

Author(s):  
Meiying Jiang ◽  
Qibing Jin ◽  
Lisheng Cheng

It is of great significance to understand the dynamics and risk level of pedestrians at the multi-exit inspection points, since they are the bottlenecks of pedestrian flow leaving public places, such as subway and railway stations. Microscopic simulations were carried out with a cellular automata model to investigate the effects of ticket-checking failure on pedestrian dynamics when passing through the multi-exit inspection points with parallel, convex and concave layouts. It was found that although ticket-checking failure could reduce the passing efficiency, it also lowers the competitive level between pedestrians and enhances passing safety in the range of medium and high pedestrian density. The competitive level decreases when increasing the probability of ticket-checking failure and the corresponding delay. The probability of ticket-checking failure and the corresponding delay have equivalent effects on passing efficiency and safety, and can be integrated as average delay. A fitted equation was proposed for the dependence of passing efficiency and safety on average delay. With the existence of ticket-checking failure in reality, the concave layout of the multi-exit inspection points gives rise to a much lower competitive level compared with the parallel and convex ones, which would enhance the safety of pedestrians at the exits.


2007 ◽  
Vol 34 (4) ◽  
pp. 708-724 ◽  
Author(s):  
Daniel Stevens ◽  
Suzana Dragićević

This study proposes an alternative cellular automata (CA) model, which relaxes the traditional CA regular square grid and synchronous growth, and is designed for representations of land-use change in rural-urban fringe settings. The model uses high-resolution spatial data in the form of irregularly sized and shaped land parcels, and incorporates synchronous and asynchronous development in order to model more realistically land-use change at the land parcel scale. The model allows urban planners and other stakeholders to evaluate how different subdivision designs will influence development under varying population growth rates and buyer preferences. A model prototype has been developed in a common desktop GIS and applied to a rapidly developing area of a midsized Canadian city.


2020 ◽  
Vol 1680 ◽  
pp. 012035
Author(s):  
A K Matolygin ◽  
N A Shalyapina ◽  
M L Gromov ◽  
S N Torgaev

Sign in / Sign up

Export Citation Format

Share Document