scholarly journals Acidic pH and divalent cation sensing by PhoQ are dispensable for systemic salmonellae virulence

eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Kevin G Hicks ◽  
Scott P Delbecq ◽  
Enea Sancho-Vaello ◽  
Marie-Pierre Blanc ◽  
Katja K Dove ◽  
...  

Salmonella PhoQ is a histidine kinase with a periplasmic sensor domain (PD) that promotes virulence by detecting the macrophage phagosome. PhoQ activity is repressed by divalent cations and induced in environments of acidic pH, limited divalent cations, and cationic antimicrobial peptides (CAMP). Previously, it was unclear which signals are sensed by salmonellae to promote PhoQ-mediated virulence. We defined conformational changes produced in the PhoQ PD on exposure to acidic pH that indicate structural flexibility is induced in α-helices 4 and 5, suggesting this region contributes to pH sensing. Therefore, we engineered a disulfide bond between W104C and A128C in the PhoQ PD that restrains conformational flexibility in α-helices 4 and 5. PhoQW104C-A128C is responsive to CAMP, but is inhibited for activation by acidic pH and divalent cation limitation. phoQW104C-A128C Salmonella enterica Typhimurium is virulent in mice, indicating that acidic pH and divalent cation sensing by PhoQ are dispensable for virulence.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jong Hyeon Seok ◽  
Hyojin Kim ◽  
Dan Bi Lee ◽  
Jeong Suk An ◽  
Eun Jeong Kim ◽  
...  

Abstract Divalent cations Cu2+ and Zn2+ can prevent the viral growth in mammalian cells during influenza infection, and viral titers decrease significantly on a copper surface. The underlying mechanisms include DNA damage by radicals, modulation of viral protease, M1 or neuraminidase, and morphological changes in viral particles. However, the molecular mechanisms underlying divalent cation-mediated antiviral activities are unclear. An unexpected observation of this study was that a Zn2+ ion is bound by Glu68 and His137 residues at the head regions of two neighboring trimers in the crystal structure of hemagglutinin (HA) derived from A/Thailand/CU44/2006. The binding of Zn2+ at high concentrations induced multimerization of HA and decreased its acid stability. The acid-induced conformational change of HA occurred even at neutral pH in the presence of Zn2+. The fusion of viral and host endosomal membranes requires substantial conformational changes in HA upon exposure to acidic pH. Therefore, our results suggest that binding of Zn2+ may facilitate the conformational changes of HA, analogous to that induced by acidic pH.


2015 ◽  
Author(s):  
Kevin G Hicks ◽  
Scott P Delbecq ◽  
Enea Sancho-Vaello ◽  
Marie-Pierre Blanc ◽  
Katja K Dove ◽  
...  

2021 ◽  
Vol 213 (1) ◽  
pp. 107689
Author(s):  
Luca Signor ◽  
Theo Paris ◽  
Caroline Mas ◽  
Adrien Picard ◽  
Georges Lutfalla ◽  
...  

1986 ◽  
Vol 261 (19) ◽  
pp. 8883-8887
Author(s):  
N C Khanna ◽  
M Tokuda ◽  
D M Waisman

1984 ◽  
Vol 62 (2-3) ◽  
pp. 170-177 ◽  
Author(s):  
Ata A. Abdel-Latif ◽  
Jack P. Smith

The properties, subcellular distribution, and the effects of Mg2+ and propranolol on phosphatidate phosphohydrolase (EC 3.1.3.4) from rabbit iris smooth muscle have been investigated. The particulate and soluble (0–30% (NH4)2SO4 fraction) enzymes were assayed using aqueous phosphatidate dispersions and membrane-bound phosphatidate as substrates, respectively. When measured with aqueous substrate, activity was detected in both the particulate and soluble fractions, with the highest relative specific activity found in the microsomal fraction. Maximum dephosphorylation by the microsomal enzyme was about 1100 nmol of inorganic phosphate released/h per milligram protein and occurred at pH 7.0–7.5. In general Mg2+ inhibited the phosphohydrolase activity of the microsomal fraction and stimulated that of the soluble fraction, and the effects of the divalent cation on both of these activities were reversed by propranolol. The microsomal enzyme was slightly stimulated by deoxycholate and inhibited by the divalent cations Mg2+, Ca2+, and Mn2+ at concentrations > 0.25 mM. In contrast, the soluble enzyme was stimulated by Mg2+. Inhibition of the microsomal enzyme by Mg2+ (0.5 mM) was reversed by both EDTA, which also stimulated at higher concentrations (1 mM), and propranolol (0.1–0.2 mM). The inhibitory effect of Ca2+ on the enzyme was not reversed by propranolol. In the absence of Mg2+, the microsomal enzyme was inhibited by propranolol in a dose-dependent manner, and both in the absence and presence of the divalent cation the soluble enzyme was inhibited by the drug in a similar manner. These data suggest that the cationic moiety of propranolol may act by competing at the Mg2+-binding sites. Addition of propranolol (0.2 mM) to iris muscle prelabelled with [14C]arachidonic acid increased accumulation of [14C]phosphatidic acid at all time intervals (2.5–90 min) and brought about a corresponding initial decrease in the formation of [14C]diacylglycerol at short time intervals (2.5 min), thus implicating the phosphohydrolase as a possible site of action of the drug on glycerolipid metabolism in this tissue. In addition to reporting on the characteristics and distribution of phosphatidate phosphohydrolase in the iris smooth muscle, the data presented add further support to our hypothesis that propranolol redirects glycerolipid metabolism in the iris by exerting multiple effects on the enzymes involved in their biosynthesis.


Sign in / Sign up

Export Citation Format

Share Document