scholarly journals Decision letter: Activity patterns of serotonin neurons underlying cognitive flexibility

2016 ◽  
eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Sara Matias ◽  
Eran Lottem ◽  
Guillaume P Dugué ◽  
Zachary F Mainen

Serotonin is implicated in mood and affective disorders. However, growing evidence suggests that a core endogenous role is to promote flexible adaptation to changes in the causal structure of the environment, through behavioral inhibition and enhanced plasticity. We used long-term photometric recordings in mice to study a population of dorsal raphe serotonin neurons, whose activity we could link to normal reversal learning using pharmacogenetics. We found that these neurons are activated by both positive and negative prediction errors, and thus report signals similar to those proposed to promote learning in conditions of uncertainty. Furthermore, by comparing the cue responses of serotonin and dopamine neurons, we found differences in learning rates that could explain the importance of serotonin in inhibiting perseverative responding. Our findings show how the activity patterns of serotonin neurons support a role in cognitive flexibility, and suggest a revised model of dopamine–serotonin opponency with potential clinical implications.


2017 ◽  
Author(s):  
Sara Matias ◽  
Eran Lottem ◽  
Guillaume P Dugué ◽  
Zachary F Mainen

2016 ◽  
Author(s):  
Sara Matias ◽  
Eran Lottem ◽  
Guillaume P. Dugué ◽  
Zachary F. Mainen

Serotonin is implicated in mood and affective disorders1,2 but growing evidence suggests that its core endogenous role may be to promote flexible adaptation to changes in the causal structure of the environment3–8. This stems from two functions of endogenous serotonin activation: inhibiting learned responses that are not currently adaptive9,10 and driving plasticity to reconfigure them1113. These mirror dual functions of dopamine in invigorating reward-related responses and promoting plasticity that reinforces new ones16,17. However, while dopamine neurons are known to be activated by reward prediction errors18,19, consistent with theories of reinforcement learning, the reported firing patterns of serotonin neurons21–23 do not accord with any existing theories1,24,25. Here, we used long-term photometric recordings in mice to study a genetically-defined population of dorsal raphe serotonin neurons whose activity we could link to normal reversal learning. We found that these neurons are activated by both positive and negative prediction errors, thus reporting the kind of surprise signal proposed to promote learning in conditions of uncertainty26,27. Furthermore, by comparing cue responses of serotonin and dopamine neurons we found differences in learning rates that could explain the importance of serotonin in inhibiting perseverative responding. Together, these findings show how the firing patterns of serotonin neurons support a role in cognitive flexibility and suggest a revised model of dopamine-serotonin opponency with potential clinical implications.


2019 ◽  
Vol 42 ◽  
Author(s):  
Eva Jablonka ◽  
Simona Ginsburg ◽  
Daniel Dor

Abstract Heyes argues that human metacognitive strategies (cognitive gadgets) evolved through cultural rather than genetic evolution. Although we agree that increased plasticity is the hallmark of human metacognition, we suggest cognitive malleability required the genetic accommodation of gadget-specific processes that enhanced the overall cognitive flexibility of humans.


Author(s):  
G. Jacobs ◽  
F. Theunissen

In order to understand how the algorithms underlying neural computation are implemented within any neural system, it is necessary to understand details of the anatomy, physiology and global organization of the neurons from which the system is constructed. Information is represented in neural systems by patterns of activity that vary in both their spatial extent and in the time domain. One of the great challenges to microscopists is to devise methods for imaging these patterns of activity and to correlate them with the underlying neuroanatomy and physiology. We have addressed this problem by using a combination of three dimensional reconstruction techniques, quantitative analysis and computer visualization techniques to build a probabilistic atlas of a neural map in an insect sensory system. The principal goal of this study was to derive a quantitative representation of the map, based on a uniform sample of afferents that was of sufficient size to allow statistically meaningful analyses of the relationships between structure and function.


2020 ◽  
Vol 34 (3) ◽  
pp. 192-201
Author(s):  
Melanie M. van der Ploeg ◽  
Jos F. Brosschot ◽  
Markus Quirin ◽  
Richard D. Lane ◽  
Bart Verkuil

Abstract. Stress-related stimuli may be presented outside of awareness and may ultimately influence health by causing repetitive increases in physiological parameters, such as blood pressure (BP). In this study, we aimed to corroborate previous studies that demonstrated BP effects of subliminally presented stress-related stimuli. This would add evidence to the hypothesis that unconscious manifestations of stress can affect somatic health. Additionally, we suggest that these findings may be extended by measuring affective changes relating to these physiological changes, using measures for self-reported and implicit positive and negative affectivity. Using a repeated measures between-subject design, we presented either the prime word “angry” ( n = 26) or “relax” ( n = 28) subliminally (17 ms) for 100 trials to a student sample and measured systolic and diastolic BP, heart rate (HR), and affect. The “angry” prime, compared to the “relax” prime, did not affect any of the outcome variables. During the priming task, a higher level of implicit negative affect (INA) was associated with a lower systolic BP and diastolic BP. No association was found with HR. Self-reported affect and implicit positive affect were not related to the cardiovascular (CV) activity. In sum, anger and relax primes elicited similar CV activity patterns, but implicit measures of affect may provide a new method to examine the relationship between (unconscious) stress and health.


Sign in / Sign up

Export Citation Format

Share Document