scholarly journals Activation of the dopaminergic pathway from VTA to the medial olfactory tubercle generates odor-preference and reward

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Zhijian Zhang ◽  
Qing Liu ◽  
Pengjie Wen ◽  
Jiaozhen Zhang ◽  
Xiaoping Rao ◽  
...  

Odor-preferences are usually influenced by life experiences. However, the neural circuit mechanisms remain unclear. The medial olfactory tubercle (mOT) is involved in both reward and olfaction, whereas the ventral tegmental area (VTA) dopaminergic (DAergic) neurons are considered to be engaged in reward and motivation. Here, we found that the VTA (DAergic)-mOT pathway could be activated by different types of naturalistic rewards as well as odors in DAT-cre mice. Optogenetic activation of the VTA-mOT DAergic fibers was able to elicit preferences for space, location and neutral odor, while pharmacological blockade of the dopamine receptors in the mOT fully prevented the odor-preference formation. Furthermore, inactivation of the mOT-projecting VTA DAergic neurons eliminated the previously formed odor-preference and strongly affected the Go-no go learning efficiency. In summary, our results revealed that the VTA (DAergic)-mOT pathway mediates a variety of naturalistic reward processes and different types of preferences including odor-preference in mice.

2021 ◽  
Author(s):  
Matthew Churgin ◽  
Danylo Lavrentovich ◽  
Matthew A-Y Smith ◽  
Ruixuan Gao ◽  
Edward S Boyden ◽  
...  

Behavior varies even among genetically identical animals raised in the same environment. However, little is known about the circuit or anatomical underpinnings of this individuality. Drosophila olfaction is an ideal system for discovering the origins of behavioral individuality among genetically identical individuals. The fly olfactory circuit is well-characterized and stereotyped, yet stable idiosyncrasies in odor preference, neural coding, and neural wiring are present and may be relevant to behavior. Using paired behavior and two-photon imaging measurements, we show that individual odor preferences in odor-vs-air and odor-vs-odor assays are predicted by idiosyncratic calcium dynamics in Olfactory Receptor Neurons (ORNs) and Projection Neurons (PNs), respectively. This suggests that circuit variation at the sensory periphery determines individual odor preferences. Furthermore, paired behavior and immunohistochemistry measurements reveal that variation in ORN presynaptic density also predicts odor-vs-odor preference. This point in the olfactory circuit appears to be a locus of individuality where microscale variation gives rise to idiosyncratic behavior. To unify these results, we constructed a leaky-integrate-and-fire model of 3,062 neurons in the antennal lobe. In these simulations, stochastic fluctuations at the glomerular level, like those observed in our ORN immunohistochemistry, produce variation in PN calcium responses with the same structure as we observed experimentally, the very structure that predicts idiosyncratic behavior. Thus, our results demonstrate how minute physiological and structural variations in a neural circuit may produce individual behavior, even when genetics and environment are held constant.


1988 ◽  
Vol 255 (3) ◽  
pp. 877-883 ◽  
Author(s):  
M N Leonard ◽  
R A Williamson ◽  
P G Strange

D2 dopamine receptors from bovine brain (caudate nucleus and olfactory tubercle) have been solubilized using sodium cholate/NaCl and their glycoprotein properties studied in terms of their interaction with wheat-germ agglutinin-agarose (WGA-agarose). Under optimal conditions about 65% of the applied D2 dopamine receptors bound to WGA-agarose and could be eluted with N-acetylglucosamine. The ability of receptors to adsorb to the affinity column was shown to be dependent on the cholate and salt concentrations used. Digestion of the membrane bound D2 dopamine receptors with neuraminidase prior to solubilisation reduced the ability of the receptors to bind to WGA-agarose (50% of applied receptors bound) whereas digestion with N-acetylglucosaminidase did not significantly affect binding to WGA-agarose. Digestion with the two enzymes together resulted in a larger decrease in binding to WGA-agarose than was seen with the two enzymes alone (40% of applied receptors bound). Stepwise elution of bound receptors from the WGA-agarose columns using 2.5 mM- and 100-mM-N-acetylglucosamine showed that about 40% of the bound receptors interacted with WGA-agarose in a low-affinity manner, the remainder showing a high-affinity interaction. Neuraminidase treatment reduced the low-affinity population suggesting that the interaction of oligosaccharides bearing sialic acid with WGA-agarose is of lower affinity and that higher-affinity binding is via N-acetylglucosamine. These data are discussed in terms of the heterogeneity of carbohydrate moieties on the D2 dopamine receptors within a brain region. In all the tests applied here, however, receptors from caudate nucleus and olfactory tubercle behaved identically so their glycosylation patterns must be very similar.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Simon A. Sharples ◽  
Nicole E. Burma ◽  
Joanna Borowska-Fielding ◽  
Charlie H. T. Kwok ◽  
Shane E. A. Eaton ◽  
...  

Abstract Dopamine is well known to regulate movement through the differential control of direct and indirect pathways in the striatum that express D1 and D2 receptors respectively. The spinal cord also expresses all dopamine receptors; however, how the specific receptors regulate spinal network output in mammals is poorly understood. We explore the receptor-specific mechanisms that underlie dopaminergic control of spinal network output of neonatal mice during changes in spinal network excitability. During spontaneous activity, which is a characteristic of developing spinal networks operating in a low excitability state, we found that dopamine is primarily inhibitory. We uncover an excitatory D1-mediated effect of dopamine on motoneurons and network output that also involves co-activation with D2 receptors. Critically, these excitatory actions require higher concentrations of dopamine; however, analysis of dopamine concentrations of neonates indicates that endogenous levels of spinal dopamine are low. Because endogenous levels of spinal dopamine are low, this excitatory dopaminergic pathway is likely physiologically-silent at this stage in development. In contrast, the inhibitory effect of dopamine, at low physiological concentrations is mediated by parallel activation of D2, D3, D4 and α2 receptors which is reproduced when endogenous dopamine levels are increased by blocking dopamine reuptake and metabolism. We provide evidence in support of dedicated spinal network components that are controlled by excitatory D1 and inhibitory D2 receptors that is reminiscent of the classic dopaminergic indirect and direct pathway within the striatum. These results indicate that network state is an important factor that dictates receptor-specific and therefore dose-dependent control of neuromodulators on spinal network output and advances our understanding of how neuromodulators regulate neural networks under dynamically changing excitability.


2011 ◽  
Vol 105 (4) ◽  
pp. 1432-1443 ◽  
Author(s):  
Christiane Linster ◽  
Qiang Nai ◽  
Matthew Ennis

The mammalian main olfactory bulb receives a significant noradrenergic input from the locus coeruleus. Norepinephrine (NE) is involved in acquisition of conditioned odor preferences in neonatal animals, in some species-specific odor-dependent behaviors, and in adult odor perception. We provide a detailed review of the functional role of NE in adult rodent main olfactory bulb function. We include cellular, synaptic, network, and behavioral data and use computational simulations to tie these different types of data together.


1987 ◽  
Vol 96 (2) ◽  
pp. 151-157 ◽  
Author(s):  
Kenneth E. Mooney ◽  
Akira Inokuchi ◽  
James B. Snow ◽  
Charles P. Kimmelman

The projection between the ventral tegmental area (VTA) and the olfactory tubercle (OT) was examined electrophysiologically in the rat. Stimulation of the olfactory bulb (OB) determined if the OT neurons were olfactory-related. Ipsilateral VTA stimulation produced a change in neuronal activity in 77% of the neurons tested, with 41% being inhibited, 24% excited, and 12% had mixed response. Contralateral VTA stimulation produced changes in only 38%. Intravenous administration of haloperidol was used in examination of the role of dopamine in this neural connection. The results suggest that the VTA-induced inhibitory response on OT neurons is mediated by dopamine, whereas excitatory responses are not. The VTA inhibitory influence projects primarily to olfactory-related neurons, since 60% of olfactory-related OT neurons were inhibited—as compared to 34% of non-olfactory-related neurons. This study documents electrophysiologically the VTA-OT connection and suggests that the dopaminergic input may modulate olfactory information projected to the OT from the OB. It also supports the concept that the OT acts as an integration center in central olfactory processing.


Sign in / Sign up

Export Citation Format

Share Document