scholarly journals Dynamic modulation of activity in cerebellar nuclei neurons during pavlovian eyeblink conditioning in mice

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Michiel M ten Brinke ◽  
Shane A Heiney ◽  
Xiaolu Wang ◽  
Martina Proietti-Onori ◽  
Henk-Jan Boele ◽  
...  

While research on the cerebellar cortex is crystallizing our understanding of its function in learning behavior, many questions surrounding its downstream targets remain. Here, we evaluate the dynamics of cerebellar interpositus nucleus (IpN) neurons over the course of Pavlovian eyeblink conditioning. A diverse range of learning-induced neuronal responses was observed, including increases and decreases in activity during the generation of conditioned blinks. Trial-by-trial correlational analysis and optogenetic manipulation demonstrate that facilitation in the IpN drives the eyelid movements. Adaptive facilitatory responses are often preceded by acquired transient inhibition of IpN activity that, based on latency and effect, appear to be driven by complex spikes in cerebellar cortical Purkinje cells. Likewise, during reflexive blinks to periocular stimulation, IpN cells show excitation-suppression patterns that suggest a contribution of climbing fibers and their collaterals. These findings highlight the integrative properties of subcortical neurons at the cerebellar output stage mediating conditioned behavior.

Author(s):  
Michiel M ten Brinke ◽  
Shane A Heiney ◽  
Xiaolu Wang ◽  
Martina Proietti-Onori ◽  
Henk-Jan Boele ◽  
...  

1998 ◽  
Vol 79 (2) ◽  
pp. 537-554 ◽  
Author(s):  
Carolyn R. Mason ◽  
Lee E. Miller ◽  
James F. Baker ◽  
James C. Houk

Mason, Carolyn R., Lee E. Miller, James F. Baker, and James C. Houk. Organization of reaching and grasping movements in the primate cerebellar nuclei as revealed by focal muscimol inactivations. J. Neurophysiol. 79: 537–554, 1998. Two monkeys were trained to point to targets and to retrieve fruit bits from a Kluver board, bottles, and tubes. Once proficient in the tasks, the macaques underwent aseptic surgical implantation of a recording chamber over the cerebellar nuclei on the side of their preferred hand. After recovery from surgery, a series of mapping penetrations were completed to identify task-related areas within the cerebellar nuclei. Muscimol (4– 16 μg; 1-2 μg/μl) was pressure injected at different sites within the forelimb zone, and the resultant deficits were observed as the monkeys performed the behavioral tasks. Quantitative measures of task performance were supplemented by direct observation of live and videotaped performance. The locations of nuclear inactivation sites were reconstructed from marking lesions and tracks visible in histological sections. Injections placed in the cerebellar interpositus nucleus and adjacent regions of dentate caused a variety of deficits in forelimb function. A prominent anteroposterior specialization was apparent within the forelimb zone of this intermediate nuclear region. Injections into the anterior interpositus nucleus and adjacent dentate impaired preshaping of the hand and the manipulation of objects, whereas injections placed more posteriorly in posterior interpositus nucleus and adjacent dentate produced deficits in the aiming of reach and the stability of the arm. During anterior injections, the monkeys failed to adequately extend their fingers in preparation for target contact, as documented for >85% of the reaches in the pointing task of monkey J. Up to 38% of the fruit bits it attempted to retrieve from the Kluver board were dropped. In comparison, during posterior inactivations, 15% were dropped and during control conditions 3% were dropped. The monkeys made significantly greater pointing errors during posterior inactivations (11 times for monkey J and 4 times for monkey C) than during anterior inactivations (8 times for monkey J and 2 times for monkey C). We refer to the region producing hand deficits as the anterior hand zone and the region producing reaching deficits as the posterior reach zone. These results are discussed in relation to the problem of achieving spatiotemporal coordination in the large population of nuclear cells that participate in any given movement. The results do not favor the hypothesis that coordination is achieved through a selection of Purkinje cells along beams of parallel fibers. Instead, it is proposed that distal and proximal musculature is coordinated by the adaptive influences of climbing fiber input to Purkinje cells. We envision a relatively nonspecific recruitment of anterior and posterior nuclear cells due to positive feedback in the limb premotor network, which then is shaped into an appropriate spatiotemporal pattern of discharge through the inhibitory input from Purkinje cells.


2018 ◽  
Vol 38 (3) ◽  
Author(s):  
Rui Li ◽  
Qi Li ◽  
Xiao-Lei Chu ◽  
Tao Tao ◽  
Lan Li ◽  
...  

Synaptic plasticity plays a role during trace eyeblink conditioning (TEBC). Synaptophysin (Syn) is a major integral transmembrane protein, located particularly in the synaptic vesicles, and is considered a molecular marker of synapses. In addition, Syn immunoreactivity is an important indicator of synaptic plasticity. In the present study, we used immunohistochemical techniques to assess changes in Syn expression in the cerebellar interpositus nucleus (IN) of guinea pigs exposed to TEBC and pseudoconditioning. Additionally, we analyzed the relationship between Syn immunoreactivity and the percentage of trace-conditioned responses. Guinea pigs underwent trace conditioning or pseudoconditioning. Following two, six, or ten sessions, they were perfused and the cerebellum was removed for Syn immunohistochemical evaluation. After sessions 6 and 10, a significant increase in conditioned response (CR) percentage was observed in the trace-conditioned group, with the CR percentage reaching the learning criteria following session 10. Besides, for trace-conditioned animals, the Syn expression in IN was found significantly up-regulated after session 10 compared with pseudoconditioned ones. Our data suggest that the increase in Syn expression links to synaptic plasticity changes in the cerebellar IN and provides a histological substrate in the IN relating to TEBC training. The changing trend of Syn immunoreactivity in the IN is associated with CR percentage.


Sign in / Sign up

Export Citation Format

Share Document