scholarly journals Uncovering temporal structure in hippocampal output patterns

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Kourosh Maboudi ◽  
Etienne Ackermann ◽  
Laurel Watkins de Jong ◽  
Brad E Pfeiffer ◽  
David Foster ◽  
...  

Place cell activity of hippocampal pyramidal cells has been described as the cognitive substrate of spatial memory. Replay is observed during hippocampal sharp-wave-ripple-associated population burst events (PBEs) and is critical for consolidation and recall-guided behaviors. PBE activity has historically been analyzed as a phenomenon subordinate to the place code. Here, we use hidden Markov models to study PBEs observed in rats during exploration of both linear mazes and open fields. We demonstrate that estimated models are consistent with a spatial map of the environment, and can even decode animals’ positions during behavior. Moreover, we demonstrate the model can be used to identify hippocampal replay without recourse to the place code, using only PBE model congruence. These results suggest that downstream regions may rely on PBEs to provide a substrate for memory. Additionally, by forming models independent of animal behavior, we lay the groundwork for studies of non-spatial memory.

2018 ◽  
Author(s):  
Kourosh Maboudi ◽  
Etienne Ackermann ◽  
Brad Pfeiffer ◽  
David Foster ◽  
Kamran Diba ◽  
...  

AbstractThe place cell activity of hippocampal pyramidal cells has been described as the cognitive map substrate of spatial memory. Replay is observed during hippocampal sharp-wave ripple-associated population burst events and is critical for consolidation and recall-guided behaviors. To present, population burst event (PBE) activity has been analyzed as a phenomenon subordinate to the place code. Here, we use hidden Markov models to study PBEs observed during exploration of both linear mazes and open fields. We demonstrate that estimated models are consistent with temporal replay sequences and that the latent states correspond to a spatial map of the environment. Moreover, we demonstrate the identification of hippocampal replay without recourse to the place code, using only PBE model congruence. These results suggest that downstream regions may rely on PBEs to form a substrate for memory. Additionally, by forming models independent of animal behavior, we lay the groundwork for studies of non-spatial memory.


2015 ◽  
Vol 135 (12) ◽  
pp. 1517-1523 ◽  
Author(s):  
Yicheng Jin ◽  
Takuto Sakuma ◽  
Shohei Kato ◽  
Tsutomu Kunitachi

Author(s):  
M. Vidyasagar

This book explores important aspects of Markov and hidden Markov processes and the applications of these ideas to various problems in computational biology. It starts from first principles, so that no previous knowledge of probability is necessary. However, the work is rigorous and mathematical, making it useful to engineers and mathematicians, even those not interested in biological applications. A range of exercises is provided, including drills to familiarize the reader with concepts and more advanced problems that require deep thinking about the theory. Biological applications are taken from post-genomic biology, especially genomics and proteomics. The topics examined include standard material such as the Perron–Frobenius theorem, transient and recurrent states, hitting probabilities and hitting times, maximum likelihood estimation, the Viterbi algorithm, and the Baum–Welch algorithm. The book contains discussions of extremely useful topics not usually seen at the basic level, such as ergodicity of Markov processes, Markov Chain Monte Carlo (MCMC), information theory, and large deviation theory for both i.i.d and Markov processes. It also presents state-of-the-art realization theory for hidden Markov models. Among biological applications, it offers an in-depth look at the BLAST (Basic Local Alignment Search Technique) algorithm, including a comprehensive explanation of the underlying theory. Other applications such as profile hidden Markov models are also explored.


Sign in / Sign up

Export Citation Format

Share Document