scholarly journals Decoding hierarchical control of sequential behavior in oscillatory EEG activity

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Atsushi Kikumoto ◽  
Ulrich Mayr

Despite strong theoretical reasons for assuming that abstract representations organize complex action sequences in terms of subplans (chunks) and sequential positions, we lack methods to directly track such content-independent, hierarchical representations in humans. We applied time-resolved, multivariate decoding analysis to the pattern of rhythmic EEG activity that was registered while participants planned and executed individual elements from pre-learned, structured sequences. Across three experiments, the theta and alpha-band activity coded basic elements and abstract control representations, in particular, the ordinal position of basic elements, but also the identity and position of chunks. Further, a robust representation of higher level, chunk identity information was only found in individuals with above-median working memory capacity, potentially providing a neural-level explanation for working-memory differences in sequential performance. Our results suggest that by decoding oscillatory activity we can track how the cognitive system traverses through the states of a hierarchical control structure.

2018 ◽  
Author(s):  
Atsushi Kikumoto ◽  
Ulrich Mayr

AbstractDespite strong theoretical reasons for assuming that abstract representations organize complex action sequences in terms of subplans (chunks) and sequential positions, we lack methods to directly track such content-independent, hierarchical representations in humans. We applied time-resolved, multivariate decoding analysis to the pattern of rhythmic EEG activity that was registered while participants planned and executed individual elements from pre-learned, structured sequences. Across three experiments, the theta and alpha-band activity independently coded basic elements and abstract control representations, in particular the ordinal position of basic elements, but also the identity and position of chunks. Further, a robust representation of higher-level, chunk identity information was only found in individuals with above-median working memory capacity, potentially providing a neural-level explanation for working-memory differences in sequential performance. Our results suggest that by decoding oscillations we can track how the cognitive system traverses through the states of a hierarchical control structure.


2018 ◽  
Author(s):  
Jason E. Pina ◽  
Mark Bodner ◽  
Bard Ermentrout

AbstractNeural oscillations have been implicated in many different basic brain and cognitive processes. Oscillatory activity has been suggested to play a role in neural binding, and more recently in the maintenance of information in working memory. This latter work has focused primarily on oscillations in terms of providing a “code” in working memory. However, oscillations may additionally play a fundamental role in essential properties and behaviors that neuronal networks must exhibit in order to produce functional working memory. In the present work, we present a biologically plausible working memory model and demonstrate that specific types of stable oscillatory dynamics may play a critical role in facilitating properties of working memory, including transitions between different memory states and a multi-item working memory capacity. We also show these oscillatory dynamics may facilitate and provide an underlying mechanism to enable a range of different types of binding in the context of working memory.Author summaryWorking memory is a form of short-term memory that is limited in capacity to perhaps 3 – 5 items. Various studies have shown that ensembles of neurons oscillate during working memory retention, and cross-frequency coupling (between, e.g., theta and gamma frequencies) has been conjectured as underlying the observed limited capacity. Binding occurs when different objects or concepts are associated with each other and can persist as working memory representations; neuronal synchrony has been hypothesized as the neural correlate. We propose a novel computational model of a network of oscillatory neuronal populations that capture salient attributes of working memory and binding by allowing for both stable synchronous and asynchronous activity. The oscillatory dynamics we describe may provide a mechanism that can facilitate aspects of working memory, such as maintaining multiple items active at once, creating rich neural representations of memories via binding, and rapidly transitioning activtation patterns based on selective inputs.


2021 ◽  
Author(s):  
Michael G Allen ◽  
Isabella Destefano ◽  
Timothy F. Brady

Chunks allow us to use long-term knowledge to efficiently represent the world in working memory. Most views of chunking assume that when we use chunks, this results in the loss of specific perceptual details, since it is presumed the contents of chunks are decoded from long-term memory rather than reflecting the exact details of the item that was presented. However, in two experiments, we find that in situations where participants make use of chunks to improve visual working memory, access to instance-specific perceptual detail (that cannot be retrieved from long-term memory) increased, rather than decreased. This supports an alternative view: that chunks facilitate the encoding and retention into memory of perceptual details as part of structured, hierarchical memories, rather than serving as mere “content-free” pointers. It also provides a strong contrast to accounts in which working memory capacity is assumed to be exhaustively described by the number of chunks remembered.


2016 ◽  
Vol 115 (1) ◽  
pp. 168-177 ◽  
Author(s):  
Joshua J. Foster ◽  
David W. Sutterer ◽  
John T. Serences ◽  
Edward K. Vogel ◽  
Edward Awh

Working memory (WM) is a system for the online storage of information. An emerging view is that neuronal oscillations coordinate the cellular assemblies that code the content of WM. In line with this view, previous work has demonstrated that oscillatory activity in the alpha band (8–12 Hz) plays a role in WM maintenance, but the exact contributions of this activity have remained unclear. Here, we used an inverted spatial encoding model in combination with electroencephalography (EEG) to test whether the topographic distribution of alpha-band activity tracks spatial representations held in WM. Participants in three experiments performed spatial WM tasks that required them to remember the precise angular location of a sample stimulus for 1,000-1,750 ms. Across all three experiments, we found that the topographic distribution of alpha-band activity tracked the specific location that was held in WM. Evoked (i.e., activity phase-locked to stimulus onset) and total (i.e., activity regardless of phase) power across a range of low-frequency bands transiently tracked the location of the sample stimulus following stimulus onset. However, only total power in the alpha band tracked the content of spatial WM throughout the memory delay period, which enabled reconstruction of location-selective channel tuning functions (CTFs). These findings demonstrate that alpha-band activity is directly related to the coding of spatial representations held in WM and provide a promising method for tracking the content of this online memory system.


2016 ◽  
Vol 37 (4) ◽  
pp. 239-249
Author(s):  
Xuezhu Ren ◽  
Tengfei Wang ◽  
Karl Schweizer ◽  
Jing Guo

Abstract. Although attention control accounts for a unique portion of the variance in working memory capacity (WMC), the way in which attention control contributes to WMC has not been thoroughly specified. The current work focused on fractionating attention control into distinctly different executive processes and examined to what extent key processes of attention control including updating, shifting, and prepotent response inhibition were related to WMC and whether these relations were different. A number of 216 university students completed experimental tasks of attention control and two measures of WMC. Latent variable analyses were employed for separating and modeling each process and their effects on WMC. The results showed that both the accuracy of updating and shifting were substantially related to WMC while the link from the accuracy of inhibition to WMC was insignificant; on the other hand, only the speed of shifting had a moderate effect on WMC while neither the speed of updating nor the speed of inhibition showed significant effect on WMC. The results suggest that these key processes of attention control exhibit differential effects on individual differences in WMC. The approach that combined experimental manipulations and statistical modeling constitutes a promising way of investigating cognitive processes.


Author(s):  
Wim De Neys ◽  
Niki Verschueren

Abstract. The Monty Hall Dilemma (MHD) is an intriguing example of the discrepancy between people’s intuitions and normative reasoning. This study examines whether the notorious difficulty of the MHD is associated with limitations in working memory resources. Experiment 1 and 2 examined the link between MHD reasoning and working memory capacity. Experiment 3 tested the role of working memory experimentally by burdening the executive resources with a secondary task. Results showed that participants who solved the MHD correctly had a significantly higher working memory capacity than erroneous responders. Correct responding also decreased under secondary task load. Findings indicate that working memory capacity plays a key role in overcoming salient intuitions and selecting the correct switching response during MHD reasoning.


Sign in / Sign up

Export Citation Format

Share Document