scholarly journals Decision letter: A plant chitinase controls cortical infection thread progression and nitrogen-fixing symbiosis

2018 ◽  
2018 ◽  
Author(s):  
Anna Malolepszy ◽  
Simon Kelly ◽  
Kasper Kildegaard Sørensen ◽  
Euan Kevin James ◽  
Christina Kalisch ◽  
...  

1979 ◽  
Vol 25 (5) ◽  
pp. 565-578 ◽  
Author(s):  
M. J. Trinick

The structure of nitrogen-fixing nodules produced by Rhizobium infection of the non-legume Parasponia andersonii was examined by light and electron (both SEM and TEM) microscopy. Comparisons were made with the nodules previously described on P. rugosa. Like the nodules on different non-legumes formed by other types of endophytes, the Rhizobium nodules on Parasponia resembled modified roots by having a central vascular bundle surrounded by an endophyte-infected zone. The intimate association between the Rhizobium and the host nodule cell was compared with the Rhizobium association found in legumes. The rhizobia were not released from the infection thread as happens in the legume. The infection thread, which propagates the Rhizobium infection to new cells, was transformed within a nodule cell from a darkly stained (light microscopy) or very electron-dense (TEM) structure to a number of thread types. The walls of the threads varied greatly in thickness and often the thread structures were without rigid walls and were only enclosed by a plasma membrane. If the rhizobia are transformed into bacteroids, as in the legumes, it would have to occur when the threads had reached their mature size, when bacterial division had ceased. Nitrogen fixation was considered to occur in all thread types.


2004 ◽  
Vol 68 (2) ◽  
pp. 280-300 ◽  
Author(s):  
Daniel J. Gage

SUMMARY Bacteria belonging to the genera Rhizobium, Mesorhizobium, Sinorhizobium, Bradyrhizobium, and Azorhizobium (collectively referred to as rhizobia) grow in the soil as free-living organisms but can also live as nitrogen-fixing symbionts inside root nodule cells of legume plants. The interactions between several rhizobial species and their host plants have become models for this type of nitrogen-fixing symbiosis. Temperate legumes such as alfalfa, pea, and vetch form indeterminate nodules that arise from root inner and middle cortical cells and grow out from the root via a persistent meristem. During the formation of functional indeterminate nodules, symbiotic bacteria must gain access to the interior of the host root. To get from the outside to the inside, rhizobia grow and divide in tubules called infection threads, which are composite structures derived from the two symbiotic partners. This review focuses on symbiotic infection and invasion during the formation of indeterminate nodules. It summarizes root hair growth, how root hair growth is influenced by rhizobial signaling molecules, infection of root hairs, infection thread extension down root hairs, infection thread growth into root tissue, and the plant and bacterial contributions necessary for infection thread formation and growth. The review also summarizes recent advances concerning the growth dynamics of rhizobial populations in infection threads.


2011 ◽  
Vol 24 (11) ◽  
pp. 1333-1344 ◽  
Author(s):  
Evgenia Ovchinnikova ◽  
Etienne-Pascal Journet ◽  
Mireille Chabaud ◽  
Viviane Cosson ◽  
Pascal Ratet ◽  
...  

A successful nitrogen-fixing symbiosis requires the accommodation of rhizobial bacteria as new organelle-like structures, called symbiosomes, inside the cells of their legume hosts. Two legume mutants that are most strongly impaired in their ability to form symbiosomes are sym1/TE7 in Medicago truncatula and sym33 in Pisum sativum. We have cloned both MtSYM1 and PsSYM33 and show that both encode the recently identified interacting protein of DMI3 (IPD3), an ortholog of Lotus japonicus (Lotus) CYCLOPS. IPD3 and CYCLOPS were shown to interact with DMI3/CCaMK, which encodes a calcium- and calmodulin-dependent kinase that is an essential component of the common symbiotic signaling pathway for both rhizobial and mycorrhizal symbioses. Our data reveal a novel, key role for IPD3 in symbiosome formation and development. We show that MtIPD3 participates in but is not essential for infection thread formation and that MtIPD3 also affects DMI3-induced spontaneous nodule formation upstream of cytokinin signaling. Further, MtIPD3 appears to be required for the expression of a nodule-specific remorin, which controls proper infection thread growth and is essential for symbiosome formation.


Sign in / Sign up

Export Citation Format

Share Document