root hair growth
Recently Published Documents


TOTAL DOCUMENTS

113
(FIVE YEARS 24)

H-INDEX

27
(FIVE YEARS 4)

2021 ◽  
Vol 49 (4) ◽  
pp. 12504
Author(s):  
Yongjie XU ◽  
Chunyong XU ◽  
Dejian ZHANG ◽  
Xianzhen DENG

Walnut, an important non-wood product forest tree, has free root hairs in orchards. Root hairs are specialized cells originating from the root epidermis that are regulated by plant hormones, such as auxins. This study was conducted to evaluate the effect and mechanism of phosphorus stress on root hair growth of walnut (Juglans regia L.) seedings by auxin (IAA) biosynthesis and transport. Both low phosphorus (LP) and no phosphorus stresses (NP) heavily decreased plant height, leaf number, total root length, root surface, shoot and root biomass, and root nutrient contents. The LP treatment significantly increased root hair growth, accompanied with up-regulation of the positive regulation root hair growth gene JrCPC and down-regulation of the negative regulation root hair growth gene JrTTG1, while the NP treatment had opposite effects. The root IAA level, IAAO activities, IAA transport genes (JrAUX1, JrLAX1, and JrPIN1), and the biosynthesis genes (JrTAA1 and JrTAR1) were increased by the LP treatment, while the NP treatment decreased all of them. Interestingly, the auxin biosynthesis gene CsYUCCA1 was not affected, which suggested that P mainly affects root hair growth of walnut by regulating auxin transport, and then affects root nutrient absorption and plant growth.


Author(s):  
Yushuang Song ◽  
Simin Li ◽  
Yi Sui ◽  
Hongxiang Zheng ◽  
Guoliang Han ◽  
...  

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Lin Liu ◽  
Lu-Guang Jiang ◽  
Jin-Hong Luo ◽  
Ai-Ai Xia ◽  
Li-Qun Chen ◽  
...  

Abstract Background Root hair, a special type of tubular-shaped cell, outgrows from root epidermal cell and plays important roles in the acquisition of nutrients and water, as well as interactions with biotic and abiotic stress. Although many genes involved in root hair development have been identified, genetic basis of natural variation in root hair growth has never been explored. Results Here, we utilized a maize association panel including 281 inbred lines with tropical, subtropical, and temperate origins to decipher the phenotypic diversity and genetic basis of root hair length. We demonstrated significant associations of root hair length with many metabolic pathways and other agronomic traits. Combining root hair phenotypes with 1.25 million single nucleotide polymorphisms (SNPs) via genome-wide association study (GWAS) revealed several candidate genes implicated in cellular signaling, polar growth, disease resistance and various metabolic pathways. Conclusions These results illustrate the genetic basis of root hair length in maize, offering a list of candidate genes predictably contributing to root hair growth, which are invaluable resource for the future functional investigation.


2021 ◽  
Author(s):  
Michitaro Shibata ◽  
David S Favero ◽  
Ryu Takebayashi ◽  
Ayako Kawamura ◽  
Bart Rymen ◽  
...  

Root hair growth is tuned in response to the environment surrounding plants. While most of previous studies focused on the enhancement of root hair growth during nutrient starvation, few studies investigated the root hair response in the presence of excess nutrients. We report that the post-embryonic growth of wild-type Arabidopsis plants is strongly suppressed with increasing nutrient availability, particularly in the case of root hair growth. We further used gene expression profiling to analyze how excess nutrient availability affects root hair growth, and found that RHD6 subfamily genes, which are positive regulators of root hair growth, are down-regulated in this condition. On the other hand, defects in GTL1 and DF1, which are negative regulators of root hair growth, cause frail and swollen root hairs to form when excess nutrients are supplied. Additionally, we observed that the RHD6 subfamily genes are mis-expressed in gtl1-1 df1-1. Furthermore, overexpression of RSL4, an RHD6 subfamily gene, induces swollen root hairs in the face of a nutrient overload, while mutation of RSL4 in gtl1-1 df1-1 restore root hair swelling phenotype. In conclusion, our data suggest that GTL1 and DF1 prevent unnecessary root hair formation by repressing RSL4 under excess nutrient conditions.


Author(s):  
Caiwen Xue ◽  
Wenfeng Li ◽  
Ren Fang Shen ◽  
Ping Lan

Phosphate is essential for plant growth and development. Root architecture alternations induced by phosphate starvation (-Pi), including primary root and lateral root growth, are mediated by iron (Fe). However, whether and how Fe participates in the -Pi-induced root hair growth (RHG) remains unclear. Here, with morphological, proteomic, and pharmacological analysis, we investigate the impacts of Fe on RHG under -Pi and the underlying mechanisms. We found that -Pi-induced RHG was affected by the local Fe availability. Reduced sensitivity to Fe was found in aux1-7, arf10arf16, and phr1 under -Pi, indicating auxin and phosphate starvation-induced responses were required for the Fe-triggered RHG under -Pi. Fe availability was then found to affect the auxin distribution and expression of phosphate starvation-responsive (PSR) genes. Proteomic analysis indicated vesicle trafficking was affected by Fe under -Pi. With the application of brefeldin A, we found the vesicle trafficking was affected by Fe, and root hairs displayed reduced sensitivity to Fe, indicating the vesicle trafficking is critical for Fe-triggered RHG under -Pi. Our data suggested that Fe is involved in RHG under -Pi by integrating the vesicle trafficking, auxin distribution, and PSR. It further enriches the understanding of the interplay between phosphate and iron on RHG.


2021 ◽  
Vol 12 ◽  
Author(s):  
Eui-Jung Kim ◽  
Woo-Jong Hong ◽  
Win Tun ◽  
Gynheung An ◽  
Sun-Tae Kim ◽  
...  

Root hairs are tip-growing cells that emerge from the root epidermis and play a role in water and nutrient uptake. One of the key signaling steps for polar cell elongation is the formation of Rho-GTP by accelerating the intrinsic exchange activity of the Rho-of-plant (ROP) or the Rac GTPase protein; this step is activated through the interaction with the plant Rho guanine nucleotide exchange factor (RopGEFs). The molecular players involved in root hair growth in rice are largely unknown. Here, we performed the functional analysis of OsRopGEF3, which is highly expressed in the root hair tissues among the OsRopGEF family genes in rice. To reveal the role of OsRopGEF3, we analyzed the phenotype of loss-of-function mutants of OsRopGEF3, which were generated using the CRISPR-Cas9 system. The mutants had reduced root hair length and increased root hair width. In addition, we confirmed that reactive oxygen species (ROS) were highly reduced in the root hairs of the osropgef3 mutant. The pairwise yeast two-hybrid experiments between OsRopGEF3 and OsROP/Rac proteins in rice revealed that the OsRopGEF3 protein interacts with OsRac3. This interaction and colocalization at the same subcellular organelles were again verified in tobacco leaf cells and rice root protoplasts via bimolecular functional complementation (BiFC) assay. Furthermore, among the three respiratory burst oxidase homolog (OsRBOH) genes that are highly expressed in rice root hair cells, we found that OsRBOH5 can interact with OsRac3. Our results demonstrate an interaction network model wherein OsRopGEF3 converts the GDP of OsRac3 into GTP, and OsRac3-GTP then interacts with the N-terminal of OsRBOH5 to produce ROS, thereby suggesting OsRopGEF3 as a key regulating factor in rice root hair growth.


2021 ◽  
Author(s):  
Iman Kamranfar ◽  
Salma Balazadeh ◽  
Bernd Mueller-Roeber

AbstractRoot hairs are outgrowths of epidermal cells central for water and nutrient acquisition. Root hair growth is plastically modified by environmental cues. A frequent response to water limitation is active shortening of root hairs, involving largely unknown molecular mechanisms. A root hair-specific cis-regulatory element (RHE) integrates developmental cues with downstream signalling of root hair morphogenesis. Here, we demonstrate NAC transcription factor RD26 to be a key expressional regulator of this drought stress-triggered developmental response in Arabidopsis thaliana. RD26 directly represses RSL4 and RSL1, two master transcription regulators of root hair morphogenesis, by binding RHE. RD26 further represses core cell wall modification genes including expansins (EXPA7, EXPA18), hydroxyproline-rich glycoproteins (LRX1), xyloglucan endotransglucosylases/hydrolases (XTH12, 13, 14, 26), class III peroxidases (PRX44) and plasma membrane H+-ATPase (AHA7) through RHE. Of note, several RD26-repressed genes are activated by RSL4. Thus, by repressing RSL4 and numerous cell wall-related genes, RD26 governs a robust gene regulatory network for restricting root hair growth under drought. A similar regulatory network exists in tomato, indicating evolutionary conservation across species.Significance statementIn plants, root hairs play a vital role for water and nutrient acquisition, soil anchorage, and microbial interactions. During drought stress, root hair growth is suppressed as an adaptive strategy to save cellular energy. We identified NAC transcription factor RD26 as a key regulator of this developmental plasticity in the model plant Arabidopsis thaliana. RD26 directly and negatively controls the transcriptional activity of key root hair developmental genes, RSL1 and RSL4. Furthermore, RD26 suppresses the expression of several functional genes underlying root hair development including numerous cell wall-related genes. RD26 thus governs a robust gene regulatory network underlying the developmental response to drought stress. A similar regulatory network exists in tomato indicating evolutionary conservation of this mechanism across species.


Author(s):  
Fei Xiao ◽  
Qianyuan Gong ◽  
Shuangshuang Zhao ◽  
Honghui Lin ◽  
Huapeng Zhou

Sign in / Sign up

Export Citation Format

Share Document