scholarly journals In vivo functional diversity of midbrain dopamine neurons within identified axonal projections

eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Navid Farassat ◽  
Kauê Machado Costa ◽  
Strahinja Stojanovic ◽  
Stefan Albert ◽  
Lora Kovacheva ◽  
...  

Functional diversity of midbrain dopamine (DA) neurons ranges across multiple scales, from differences in intrinsic properties and connectivity to selective task engagement in behaving animals. Distinct in vitro biophysical features of DA neurons have been associated with different axonal projection targets. However, it is unknown how this translates to different firing patterns of projection-defined DA subpopulations in the intact brain. We combined retrograde tracing with single-unit recording and labelling in mouse brain to create an in vivo functional topography of the midbrain DA system. We identified differences in burst firing among DA neurons projecting to dorsolateral striatum. Bursting also differentiated DA neurons in the medial substantia nigra (SN) projecting either to dorsal or ventral striatum. We found differences in mean firing rates and pause durations among ventral tegmental area (VTA) DA neurons projecting to lateral or medial shell of nucleus accumbens. Our data establishes a high-resolution functional in vivo landscape of midbrain DA neurons.

2019 ◽  
Author(s):  
Navid Farassat ◽  
Kauê M. Costa ◽  
Stefan Albert ◽  
Lora Kovacheva ◽  
Josef Shin ◽  
...  

AbstractThe functional diversity of midbrain dopamine (DA) neurons ranges across multiple scales, from differences in intrinsic properties and synaptic connectivity to selective task engagement in behaving animals. Distinct in vitro biophysical features of DA neurons have been associated with different axonal projection targets. However, it is unknown how this translates to different firing patterns of projection-defined DA subpopulations in the intact brain. We combined retrograde tracing with single-unit recording and juxtacellular labelling in mouse brain to create the first single cell-resolved in vivo functional topography of the midbrain DA system. We identified surprising differences in burst firing among those DA neurons projecting to dorsolateral striatum, which were organized along the medio-lateral substantia nigra (SN) axis. Furthermore, burst properties also differentiated DA neurons in the medial SN that projected either to dorsal or ventral striatum. In contrast, DA neurons projecting to lateral shell of nucleus accumbens displayed identical firing properties, irrespective of whether they were located in the SN or ventral tegmental area (VTA), thus breaching classical anatomical boundaries. Finally, we found robust differences in mean firing rates and pause durations among VTA DA neurons projecting to either lateral or medial shell of nucleus accumbens. Together, our data set establishes a high-resolution functional landscape of midbrain DA neurons, which will facilitate the identification of selective functions and pathophysiological changes within the midbrain DA system.


Author(s):  
Navid Farassat ◽  
Kauê Machado Costa ◽  
Strahinja Stojanovic ◽  
Stefan Albert ◽  
Lora Kovacheva ◽  
...  

2021 ◽  
pp. 1-24
Author(s):  
Juho-Matti Renko ◽  
Arun Kumar Mahato ◽  
Tanel Visnapuu ◽  
Konsta Valkonen ◽  
Mati Karelson ◽  
...  

Background: Parkinson’s disease (PD) is a progressive neurological disorder where loss of dopamine neurons in the substantia nigra and dopamine depletion in the striatum cause characteristic motor symptoms. Currently, no treatment is able to halt the progression of PD. Glial cell line-derived neurotrophic factor (GDNF) rescues degenerating dopamine neurons both in vitro and in animal models of PD. When tested in PD patients, however, the outcomes from intracranial GDNF infusion paradigms have been inconclusive, mainly due to poor pharmacokinetic properties. Objective: We have developed drug-like small molecules, named BT compounds that activate signaling through GDNF’s receptor, the transmembrane receptor tyrosine kinase RET, both in vitro and in vivo and are able to penetrate through the blood-brain barrier. Here we evaluated the properties of BT44, a second generation RET agonist, in immortalized cells, dopamine neurons and rat 6-hydroxydopamine model of PD. Methods: We used biochemical, immunohistochemical and behavioral methods to evaluate the effects of BT44 on dopamine system in vitro and in vivo. Results: BT44 selectively activated RET and intracellular pro-survival AKT and MAPK signaling pathways in immortalized cells. In primary midbrain dopamine neurons cultured in serum-deprived conditions, BT44 promoted the survival of the neurons derived from wild-type, but not from RET knockout mice. BT44 also protected cultured wild-type dopamine neurons from MPP +-induced toxicity. In a rat 6-hydroxydopamine model of PD, BT44 reduced motor imbalance and could have protected dopaminergic fibers in the striatum. Conclusion: BT44 holds potential for further development into a novel, possibly disease-modifying therapy for PD.


2021 ◽  
Author(s):  
◽  
Kanako Otomo

Dopamine is a key neurotransmitter that serves several essential functions in daily behaviors such as locomotion, motivation, stimulus coding, and learning. Disrupted dopamine circuits can result in altered functions of these behaviors which can lead to motor and psychiatric symptoms and diseases. In the central nervous system, dopamine is primarily released by dopamine neurons located in the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) within the midbrain, where they signal behaviorally-relevant information to downstream structures by altering their firing patterns. Their “pacemaker” firing maintains baseline dopamine levels at projection sites, whereas phasic “burst” firing transiently elevates dopamine concentrations. Firing activity of dopamine neurons projecting to different brain regions controls the activation of distinct dopamine pathways and circuits. Therefore, characterization of how distinct firing patterns are generated in dopamine neuron populations will be necessary to further advance our understanding of dopamine circuits that encode environmental information and facilitate a behavior. However, there is currently a large gap in the knowledge of biophysical mechanisms of phasic firing in dopamine neurons, as spontaneous burst firing is only observed in the intact brain, where access to intrinsic neuronal activity remains a challenge. So far, a series of highly-influential studies published in the 1980s by Grace and Bunney is the only available source of information on the intrinsic activity of midbrain dopamine neurons in vivo, in which sharp electrodes were used to penetrate dopamine neurons to record their intracellular activity. A novel approach is thus needed to fill in the gap. In vivo whole-cell patch-clamp method is a tool that enables access to a neuron’s intrinsic activity and subthreshold membrane potential dynamics in the intact brain. It has been used to record from neurons in superficial brain regions such as the cortex and hippocampus, and more recently in deeper regions such as the amygdala and brainstem, but has not yet been performed on midbrain dopamine neurons. Thus, the deep brain in vivo patch-clamp recording method was established in the lab in an attempt to investigate the subthreshold membrane potential dynamics of tonic and phasic firing in dopamine neurons in vivo. The use of this method allowed the first in-depth examination of burst firing and its subthreshold membrane potential activity of in vivo midbrain dopamine neurons, which illuminated that firing activity and subthreshold membrane activity of dopamine neurons are very closely related. Furthermore, systematic characterization of subthreshold membrane patterns revealed that tonic and phasic firing patterns of in vivo dopamine neurons can be classified based on three distinct subthreshold membrane signatures: 1) tonic firing, characterized by stable, non-fluctuating subthreshold membrane potentials; 2) rebound bursting, characterized by prominent hyperpolarizations that initiate bursting; and 3) plateau bursting, characterized by transient, depolarized plateaus on which bursting terminates. The results thus demonstrated that different types of phasic firing are driven by distinct patterns of subthreshold membrane activity, which may potentially signal distinct types of information. Taken together, the deep brain in vivo patch-clamp technique can be used for the investigation of firing mechanisms of dopamine neurons in the intact brain and will help address open questions in the dopamine field, particularly regarding the biophysical mechanisms of burst firing in dopamine neurons that control behavior.


2018 ◽  
Vol 119 (1) ◽  
pp. 84-95 ◽  
Author(s):  
Christopher Knowlton ◽  
Sylvie Kutterer ◽  
Jochen Roeper ◽  
Carmen C. Canavier

Burst firing in medial substantia nigra (mSN) dopamine (DA) neurons has been selectively linked to novelty-induced exploration behavior in mice. Burst firing in mSN DA neurons, in contrast to lateral SN DA neurons, requires functional ATP-sensitive potassium (K-ATP) channels both in vitro and in vivo. However, the precise role of K-ATP channels in promoting burst firing is unknown. We show experimentally that L-type calcium channel activity in mSN DA neurons enhances open probability of K-ATP channels. We then generate a mathematical model to study the role of Ca2+ dynamics driving K-ATP channel function in mSN DA neurons during bursting. In our model, Ca2+ influx leads to local accumulation of ADP due to Ca-ATPase activity, which in turn activates K-ATP channels. If K-ATP channel activation reaches levels sufficient to terminate spiking, rhythmic bursting occurs. The model explains the experimental observation that, in vitro, coapplication of NMDA and a selective K-ATP channel opener, NN414, is required to elicit bursting as follows. Simulated NMDA receptor activation increases the firing rate and the rate of Ca2+ influx, which increases the activation of K-ATP. The model suggests that additional sources of hyperpolarization, such as GABAergic synaptic input, are recruited in vivo for burst termination or rebound burst discharge. The model predicts that NN414 increases the sensitivity of the K-ATP channel to ADP, promoting burst firing in vitro, and that that high levels of Ca2+ buffering, as might be expected in the calbindin-positive SN DA neuron subpopulation, promote rhythmic bursting pattern, consistent with experimental observations in vivo. NEW & NOTEWORTHY Recently identified distinct subpopulations of midbrain dopamine neurons exhibit differences in their two primary activity patterns in vivo: tonic (single spike) firing and phasic bursting. This study elucidates the biophysical basis of bursts specific to dopamine neurons in the medial substantia nigra, enabled by ATP-sensitive K+ channels and necessary for novelty-induced exploration. A better understanding of how dopaminergic signaling differs between subpopulations may lead to therapeutic strategies selectively targeted to specific subpopulations.


2021 ◽  
pp. 1-8
Author(s):  
Ren-Wei Du ◽  
Wen-Guang Bu

Emerging evidence indicates that A1 reactive astrocytes play crucial roles in the pathogenesis of Parkinson’s disease (PD). Thus, development of agents that could inhibit the formation of A1 reactive astrocytes could be used to treat PD. Simvastatin has been touted as a potential neuroprotective agent for neurologic disorders such as PD, but the specific underlying mechanism remains unclear. The 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD and primary astrocytes/neurons were prepared to investigate the effects of simvastatin on PD and its underlying mechanisms in vitro and in vivo. We show that simvastatin protects against the loss of dopamine neurons and behavioral deficits in the MPTP mouse model of PD. We also found that simvastatin suppressed the expression of A1 astrocytic specific markers in vivo and in vitro. In addition, simvastatin alleviated neuron death induced by A1 astrocytes. Our findings reveal that simvastatin is neuroprotective via the prevention of conversion of astrocytes to an A1 neurotoxic phenotype. In light of simvastatin favorable properties, it should be evaluated in the treatment of PD and related neurologic disorders characterized by A1 reactive astrocytes.


Sign in / Sign up

Export Citation Format

Share Document