scholarly journals Decision letter: Secondary ossification center induces and protects growth plate structure

2020 ◽  
Author(s):  
Andrea Vortkamp
2020 ◽  
Author(s):  
Meng Xie ◽  
Pavel Gol'din ◽  
Anna Nele Herdina ◽  
Jordi Estefa ◽  
Ekaterina V Medvedeva ◽  
...  

Author(s):  
Meng Xie ◽  
Anna Nele Herdina ◽  
Jordi Estefa ◽  
Ekaterina V Medvedeva ◽  
Lei Li ◽  
...  

eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Meng Xie ◽  
Pavel Gol'din ◽  
Anna Nele Herdina ◽  
Jordi Estefa ◽  
Ekaterina V Medvedeva ◽  
...  

Growth plate and articular cartilage constitute a single anatomical entity early in development but later separate into two distinct structures by the secondary ossification center (SOC). The reason for such separation remains unknown. We found that evolutionarily SOC appears in animals conquering the land - amniotes. Analysis of the ossification pattern in mammals with specialized extremities (whales, bats, jerboa) revealed that SOC development correlates with the extent of mechanical loads. Mathematical modeling revealed that SOC reduces mechanical stress within the growth plate. Functional experiments revealed the high vulnerability of hypertrophic chondrocytes to mechanical stress and showed that SOC protects these cells from apoptosis caused by extensive loading. Atomic force microscopy showed that hypertrophic chondrocytes are the least mechanically stiff cells within the growth plate. Altogether, these findings suggest that SOC has evolved to protect the hypertrophic chondrocytes from the high mechanical stress encountered in the terrestrial environment.


2015 ◽  
Vol 30 (12) ◽  
pp. 2239-2248 ◽  
Author(s):  
Yongmei Wang ◽  
Alicia Menendez ◽  
Chak Fong ◽  
Hashem Z ElAlieh ◽  
Takuo Kubota ◽  
...  

2019 ◽  
Author(s):  
Meng Xie ◽  
Pavel Gol’din ◽  
Anna Nele Herdina ◽  
Jordi Estefa ◽  
Ekaterina V Medvedeva ◽  
...  

AbstractGrowth plate and articular cartilage constitute a single anatomical entity early in development, but later separate into two distinct structures by the secondary ossification center (SOC). The reason for such separation remains unknown. We found that evolutionarily SOC appears in animals conquering the land - amniotes. Analysis of ossification pattern in mammals with specialized extremities (whales, bats, jerboa) revealed that SOC development correlates with the extent of mechanical loads. Mathematical modelling revealed that SOC reduces mechanical stress within the growth plate. Functional experiments revealed high vulnerability of hypertrophic chondrocytes to mechanical stress and showed that SOC protects these cells from apoptosis caused by extensive loading. Atomic force microscopy showed that hypertrophic chondrocytes are the least mechanically stiff cells within the growth plate. Altogether, these findings suggest that SOC has evolved to protect the hypertrophic chondrocytes from the high mechanical stress encountered in the terrestrial environment.


Bone Reports ◽  
2020 ◽  
Vol 13 ◽  
pp. 100663
Author(s):  
Meng Xie ◽  
Lei Li ◽  
Phillip Newton ◽  
Lauren Shumate ◽  
Shigeki Nishimori ◽  
...  

1988 ◽  
Vol 7 (1-2) ◽  
pp. 9-13 ◽  
Author(s):  
Ernst B. Hunziker

2021 ◽  
Vol 12 (12) ◽  
pp. 173-176
Author(s):  
Mallikarjun Adibatti ◽  
Muthiah Pitchandi ◽  
V Bhuvaneswari

Background: Os trigonum (OST) is commonly located on the posterior aspect of the talus. It occurs as a result of secondary ossification center failing to fuse with the lateral tubercle of the posterior process of the talus; its incidence varies between 2 and 25%, and is more often bilateral. It occurs as an intra-articular Os, which is most often securely rooted to the lateral tubercle of the talus by a fibrocartilaginous synchondrosis. Aims and Objective: To determine the incidence, morphology, and distribution of Os Trigonum (OST). Materials and Methods: Retrospective 500 lateral foot radiographs view were studied to determine the incidence, morphology, and distribution of OST. Results: Incidence of OST in the present study was 6.6%, with predominantly round or ovoid in shape. OST was located on the posterolateral aspect of the talus. Conclusion: OST can be one of the causative factor responsible for Flexor hallucis longus tendonitis, OST syndrome, which occur in plantarflexion of the ankle, leading to compression of the OST between the distal tibia and the calcaneus. Hence, knowledge regarding the incidence, morphology, and distribution of OST is important for the radiologist, orthopedic surgeons to arrive at a correct diagnosis, which aids in the management of cases presenting with complaints of posterior ankle pain.


2016 ◽  
Vol 16 (04) ◽  
pp. 1650054 ◽  
Author(s):  
JOHANA MARIA GUEVARA ◽  
HECTOR ALFONSO CASTRO-ABRIL ◽  
LUIS ALEJANDRO BARRERA ◽  
DIEGO ALEXANDER GARZÓN-ALVARADO

The growth plate is a cartilaginous structure located in the metaphysis of long bones, characterized histologically by its stratification and columnar arrangement. It is responsible for assuring longitudinal growth. Evaluation of growth plate histological characteristics has been traditionally performed using qualitative observation; however, some quantitative approaches have been reported using complex techniques. Here, we propose a simple quantitative images based analysis in order to evaluate objectively columnar arrangement within growth plate. For this, we defined six descriptors that were condensated in a geometric tensor. This tensor could be used as a single parameter to evaluate the growth plate organization. Validation of the tensor was performed with growth plate microphotographs of three healthy species (rat, pig and rabbit) and an abnormal one (Csf1tl/Csf1tl rat) found in specialized literature. According to our results, the descriptors and the tensor give a complete picture of the organization of the growth plate, reflecting the expected stratification and columnar arrangement of the cells within the tissue. This methodology could be a reliable tool for evaluation of growth plate structure for research and diagnostic purposes, taking into account that it can be easily implemented.


Sign in / Sign up

Export Citation Format

Share Document