high mechanical stress
Recently Published Documents


TOTAL DOCUMENTS

34
(FIVE YEARS 16)

H-INDEX

6
(FIVE YEARS 2)

2021 ◽  
Vol 161 ◽  
pp. 103093
Author(s):  
Rita Sorrentino ◽  
Nicholas B. Stephens ◽  
Damiano Marchi ◽  
Lily J.D. DeMars ◽  
Carla Figus ◽  
...  

2021 ◽  
Vol 118 (28) ◽  
pp. e2103457118
Author(s):  
Yang Gao ◽  
Xiuyuan Han ◽  
Jiaojiao Chen ◽  
Yudong Pan ◽  
Meng Yang ◽  
...  

During operations, surgical mesh is commonly fixed on tissues through fasteners such as sutures and staples. Attributes of surgical mesh include biocompatibility, flexibility, strength, and permeability, but sutures and staples may cause stress concentration and tissue damage. Here, we show that the functions of surgical mesh can be significantly broadened by developing a family of materials called hydrogel–mesh composites (HMCs). The HMCs retain all the attributes of surgical mesh and add one more: adhesion to tissues. We fabricate an HMC by soaking a surgical mesh with a precursor, and upon cure, the precursor forms a polymer network of a hydrogel, in macrotopological entanglement with the fibers of the surgical mesh. In a surgery, the HMC is pressed onto a tissue, and the polymers in the hydrogel form covalent bonds with the tissue. To demonstrate the concept, we use a poly(N-isopropylacrylamide) (PNIPAAm)/chitosan hydrogel and a polyethylene terephthalate (PET) surgical mesh. In the presence a bioconjugation agent, the chitosan and the tissue form covalent bonds, and the adhesion energy reaches above 100 J⋅m−2. At body temperature, PNIPAAm becomes hydrophobic, so that the hydrogel does not swell and the adhesion is stable. Compared with sutured surgical mesh, the HMC distributes force over a large area. In vitro experiments are conducted to study the application of HMCs to wound closure, especially on tissues under high mechanical stress. The performance of HMCs on dynamic living tissues is further investigated in the surgery of a sheep.


2021 ◽  
Author(s):  
Medhat S. Farahat Khedr

Abstract The glycolysis products of polyethylene terephthalate (PET) waste represent a potential source for many value-added products that contain terephthalate repeating units in their backbones. Terephthalate repeating units were not attained directly from terephthalic acid due to its high melting point in addition to its tendency to sublime before it reacts. Glycolysis of PET provides an excellent solution for recycling polymer waste and constitutes a substantial starting material for manufacturing materials with high mechanical stress, such as unsaturated polyesters and polyurethane products. In this study, PET was first depolymerized by glycolysis, and glycolyzed products were then dimerized by reaction with toluene di-isocyanate TDI with half equivalence of their hydroxyl groups for the purpose of inserting urethane blocks into the oligomer structure. The remaining half equivalence of terminal hydroxyl groups was modified into acrylate groups by an acrylation reaction. The acrylated oligo urethane ester products were crosslinked with different co-monomers and tested for UV curability and mechanical properties, and they showed outstanding results.


2021 ◽  
Vol 129 (24) ◽  
pp. 243901
Author(s):  
M. S. García Alonso ◽  
A. Hernando ◽  
J. Vinolas ◽  
M. A. García

2021 ◽  
Vol 14(63) (1) ◽  
pp. 209-216
Author(s):  
G.S. IACOB ◽  
◽  
D. VRABIE ◽  
V.I. STEGARIU ◽  
◽  
...  

Hamstring strains are usually a result of a high mechanical stress produced by a quick extensive contraction or a violent stretch of the muscle group. This study aimed the effectiveness of INDIBA therapy (Group B) compared with the use of TECAR therapy (Group A). The first stage of rehabilitation represented first two weeks which were mainly based on the application of radiofrequency therapies to the posterior level of the thigh, progressive exercises and cryotherapy. Numeric Pain Rating Scale, manual muscle testing and range of motion had been used to evaluate the subjects, a significant advantage being shown for group B in the pain assessment


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Jose De Andres ◽  
Giuseppe Luca Formicola ◽  
Ruben Rubio-Haro ◽  
Carmen De Andres-Serrano

AbstractElectrode migration is a challenge, even with adequate anchoring techniques, due to the high mechanical stress on components of occipital nerve stimulation (ONS) for headache disorders. When a lead displacement of an ONS implant is diagnosed, there are currently different approaches described for its management. Nevertheless current neuromodulation devices are designed like a continuum of components without any intermediate connector, and if a lead displacement is diagnosed, the solution is the complete removal of the electrode from its placement, and its repositioning through an ex-novo procedure. The described technique can allow ONS leads to be revised while minimizing the need to reopen incisions over the IPG, thus improving patients’ intraoperative and postoperative discomfort, shortening surgical time and medical costs, reasonably reducing the incidence of infective postoperative complications.


eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Meng Xie ◽  
Pavel Gol'din ◽  
Anna Nele Herdina ◽  
Jordi Estefa ◽  
Ekaterina V Medvedeva ◽  
...  

Growth plate and articular cartilage constitute a single anatomical entity early in development but later separate into two distinct structures by the secondary ossification center (SOC). The reason for such separation remains unknown. We found that evolutionarily SOC appears in animals conquering the land - amniotes. Analysis of the ossification pattern in mammals with specialized extremities (whales, bats, jerboa) revealed that SOC development correlates with the extent of mechanical loads. Mathematical modeling revealed that SOC reduces mechanical stress within the growth plate. Functional experiments revealed the high vulnerability of hypertrophic chondrocytes to mechanical stress and showed that SOC protects these cells from apoptosis caused by extensive loading. Atomic force microscopy showed that hypertrophic chondrocytes are the least mechanically stiff cells within the growth plate. Altogether, these findings suggest that SOC has evolved to protect the hypertrophic chondrocytes from the high mechanical stress encountered in the terrestrial environment.


Actuators ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 76
Author(s):  
João Falcão Carneiro ◽  
João Bravo Pinto ◽  
Fernando Gomes de Almeida ◽  
Miranda Fateri

Pneumatic linear peristaltic actuators can offer some potential advantages when compared with conventional ones. Low cost, virtually unlimited stroke and easy implementation of curved motion profiles are among those benefits. On the downside, these actuators suffer high mechanical stress, which leads to short endurance and increased leakage between chambers during the actuator lifetime. This paper contributes to this field by experimentally characterizing the life behavior of a prototype of a linear pneumatic peristaltic actuator where force—instead of displacement—between rollers is imposed. It is shown that the use of an imposed force configuration has a significant impact in the actuator life time. In fact, the proposed actuator configuration has an average endurance of up to 250% higher than the one previously presented in the literature. This result was obtained while maintaining almost zero leakage between chambers, despite the hose wear throughout the service life. Finally, this paper explores the use of different hose geometries to increase the actuator life span. To this end, a preliminary study is presented where two different 3D printed hose cross sections are tested and compared with a circular one.


2020 ◽  
Vol 4 (3) ◽  
pp. 48 ◽  
Author(s):  
Adamu Musa Mohammed ◽  
Mostapha Ariane ◽  
Alessio Alexiadis

This study proposes a 3D particle-based (discrete) multiphysics approach for modelling calcification in the aortic valve. Different stages of calcification (from mild to severe) were simulated, and their effects on the cardiac output were assessed. The cardiac flow rate decreases with the level of calcification. In particular, there is a critical level of calcification below which the flow rate decreases dramatically. Mechanical stress on the membrane is also calculated. The results show that, as calcification progresses, spots of high mechanical stress appear. Firstly, they concentrate in the regions connecting two leaflets; when severe calcification is reached, then they extend to the area at the basis of the valve.


Actuators ◽  
2020 ◽  
Vol 9 (3) ◽  
pp. 63 ◽  
Author(s):  
João Falcão Carneiro ◽  
João Bravo Pinto ◽  
Fernando Gomes de Almeida

Pneumatic linear peristaltic actuators can offer some potential advantages when compared with conventional ones. The low cost, virtually unlimited stroke and easy implementation of curved motion profiles are among those benefits. On the downside, these actuators suffer high mechanical stress that can lead to short service life and increased leakage among chambers during the actuator lifetime. One way to cope with this problem is to impose the force—instead of the displacement—between rollers, as this has been shown to improve the endurance of the hose while reducing leakage during the actuator lifetime. This paper presents closed control loop results using such a setup. Previous studies with linear peristaltic actuators have revealed that, although it is possible to reach zero steady state error to constant references with closed loop control, the dynamic response obtained is very slow. This paper is mainly focused on this topic, namely on the development of several control laws to improve the dynamic performance of the system while avoiding limit cycles. The new developed control law leads to an average time of 1.67 s to reach a 0.1 mm error band in an experiment consisting of a series of 16 steps ranging from 0.02 to 0.32 m in amplitude.


Sign in / Sign up

Export Citation Format

Share Document