scholarly journals Secondary ossification center protects growth plate chondrocytes from mechanical stress

Bone Reports ◽  
2020 ◽  
Vol 13 ◽  
pp. 100663
Author(s):  
Meng Xie ◽  
Lei Li ◽  
Phillip Newton ◽  
Lauren Shumate ◽  
Shigeki Nishimori ◽  
...  
eLife ◽  
2020 ◽  
Vol 9 ◽  
Author(s):  
Meng Xie ◽  
Pavel Gol'din ◽  
Anna Nele Herdina ◽  
Jordi Estefa ◽  
Ekaterina V Medvedeva ◽  
...  

Growth plate and articular cartilage constitute a single anatomical entity early in development but later separate into two distinct structures by the secondary ossification center (SOC). The reason for such separation remains unknown. We found that evolutionarily SOC appears in animals conquering the land - amniotes. Analysis of the ossification pattern in mammals with specialized extremities (whales, bats, jerboa) revealed that SOC development correlates with the extent of mechanical loads. Mathematical modeling revealed that SOC reduces mechanical stress within the growth plate. Functional experiments revealed the high vulnerability of hypertrophic chondrocytes to mechanical stress and showed that SOC protects these cells from apoptosis caused by extensive loading. Atomic force microscopy showed that hypertrophic chondrocytes are the least mechanically stiff cells within the growth plate. Altogether, these findings suggest that SOC has evolved to protect the hypertrophic chondrocytes from the high mechanical stress encountered in the terrestrial environment.


2019 ◽  
Author(s):  
Meng Xie ◽  
Pavel Gol’din ◽  
Anna Nele Herdina ◽  
Jordi Estefa ◽  
Ekaterina V Medvedeva ◽  
...  

AbstractGrowth plate and articular cartilage constitute a single anatomical entity early in development, but later separate into two distinct structures by the secondary ossification center (SOC). The reason for such separation remains unknown. We found that evolutionarily SOC appears in animals conquering the land - amniotes. Analysis of ossification pattern in mammals with specialized extremities (whales, bats, jerboa) revealed that SOC development correlates with the extent of mechanical loads. Mathematical modelling revealed that SOC reduces mechanical stress within the growth plate. Functional experiments revealed high vulnerability of hypertrophic chondrocytes to mechanical stress and showed that SOC protects these cells from apoptosis caused by extensive loading. Atomic force microscopy showed that hypertrophic chondrocytes are the least mechanically stiff cells within the growth plate. Altogether, these findings suggest that SOC has evolved to protect the hypertrophic chondrocytes from the high mechanical stress encountered in the terrestrial environment.


2020 ◽  
Author(s):  
Meng Xie ◽  
Pavel Gol'din ◽  
Anna Nele Herdina ◽  
Jordi Estefa ◽  
Ekaterina V Medvedeva ◽  
...  

Author(s):  
Meng Xie ◽  
Anna Nele Herdina ◽  
Jordi Estefa ◽  
Ekaterina V Medvedeva ◽  
Lei Li ◽  
...  

Endocrinology ◽  
2005 ◽  
Vol 146 (12) ◽  
pp. 5294-5303 ◽  
Author(s):  
Luis Rodriguez ◽  
Chialing Tu ◽  
Zhiqiang Cheng ◽  
Tsui-Hua Chen ◽  
Daniel Bikle ◽  
...  

The extracellular Ca2+-sensing receptor (CaR) plays an essential role in mineral homeostasis. Studies to generate CaR-knockout (CaR−/−) mice indicate that insertion of a neomycin cassette into exon 5 of the mouse CaR gene blocks the expression of full-length CaRs. This strategy, however, allows for the expression of alternatively spliced CaRs missing exon 5 [Exon5(−)CaRs]. These experiments addressed whether growth plate chondrocytes (GPCs) from CaR−/− mice express Exon5(−)CaRs and whether these receptors activate signaling. RT-PCR and immunocytochemistry confirmed the expression of Exon5(−)CaR in growth plates from CaR−/− mice. In Chinese hamster ovary or human embryonic kidney-293 cells, recombinant human Exon5(−)CaRs failed to activate phospholipase C likely due to their inability to reach the cell surface as assessed by intact-cell ELISA and immunocytochemistry. Human Exon5(−)CaRs, however, trafficked normally to the cell surface when overexpressed in wild-type or CaR−/− GPCs. Immunocytochemistry of growth plate sections and cultured GPCs from CaR−/− mice showed easily detectable cell-membrane expression of endogenous CaRs (presumably Exon5(−)CaRs), suggesting that trafficking of this receptor form to the membrane can occur in GPCs. In GPCs from CaR−/− mice, high extracellular [Ca2+] ([Ca2+]e) increased inositol phosphate production with a potency comparable with that of wild-type GPCs. Raising [Ca2+]e also promoted the differentiation of CaR−/− GPCs as indicated by changes in proteoglycan accumulation, mineral deposition, and matrix gene expression. Taken together, our data support the idea that expression of Exon5(−)CaRs may compensate for the loss of full-length CaRs and be responsible for sensing changes in [Ca2+]e in GPCs in CaR−/− mice.


2007 ◽  
Vol 101 (2) ◽  
pp. 389-398 ◽  
Author(s):  
Edna E. Mancilla ◽  
Mario Galindo ◽  
Barbara Fertilio ◽  
Mario Herrera ◽  
Karime Salas ◽  
...  

2002 ◽  
Vol 62 (5) ◽  
pp. 1591-1600 ◽  
Author(s):  
Daniela Kiepe ◽  
Tim Ulinski ◽  
David R. Powell ◽  
Susan K. Durham ◽  
Otto Mehls ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document