scholarly journals The mitochondrial permeability transition pore activates the mitochondrial unfolded protein response and promotes aging

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Suzanne Angeli ◽  
Anna Foulger ◽  
Manish Chamoli ◽  
Tanuja Harshani Peiris ◽  
Akos Gerencser ◽  
...  

Mitochondrial activity determines aging rate and the onset of chronic diseases. The mitochondrial permeability transition pore (mPTP) is a pathological pore in the inner mitochondrial membrane thought to be composed of the F-ATP synthase (complex V). OSCP, a subunit of F-ATP synthase, helps protect against mPTP formation. How the destabilization of OSCP may contribute to aging, however, is unclear. We have found that loss OSCP in the nematode Caenorhabditis elegans initiates the mPTP and shortens lifespan specifically during adulthood, in part via initiation of the mitochondrial unfolded protein response (UPRmt). Pharmacological or genetic inhibition of the mPTP inhibits the UPRmt and restores normal lifespan. Loss of the putative pore-forming component of F-ATP synthase extends adult lifespan, suggesting that the mPTP normally promotes aging. Our findings reveal how an mPTP/UPRmt nexus may contribute to aging and age-related diseases and how inhibition of the UPRmt may be protective under certain conditions.

2020 ◽  
Author(s):  
Suzanne Angeli ◽  
Anna C. Foulger ◽  
Tanuja Harshani Peiris ◽  
Akos A. Gerencser ◽  
Manish Chamoli ◽  
...  

SUMMARYMitochondrial activity determines aging rate and the onset of chronic diseases. The mitochondrial permeability transition pore (mPTP) is a pathological pore in the inner mitochondrial membrane thought to be composed of the F-ATP synthase (complex V). Oligomycin sensitivity-conferring protein (OSCP), a subunit of F-ATP synthase, helps protect against mPTP formation. How the destabilization of OSCP may contribute to aging, however, is unclear. We have found that loss OSCP in the nematode Caenorhabditis elegans initiates the mPTP and shortens lifespan specifically during adulthood, in part via initiation of the mitochondrial unfolded protein response (UPRmt). Genetic or pharmacological inhibition of the mPTP inhibits the UPRmt and restores normal lifespan. The mitochondria of long-lived mutants are buffered from the maladaptive UPRmt, partially via the transcription factor FOXO3a/daf-16. Our findings reveal how the mPTP/UPRmt nexus may contribute to aging and age-related diseases and how inhibition of the UPRmt may be protective under certain conditions.


2014 ◽  
Vol 106 (2) ◽  
pp. 3a
Author(s):  
Paolo Bernardi ◽  
Valentina Giorgio ◽  
Michela Carraro ◽  
Sophia von Stockum ◽  
Victoria Burchell ◽  
...  

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Wenchang Zhou ◽  
Fabrizio Marinelli ◽  
Corrine Nief ◽  
José D Faraldo-Gómez

Pathological metabolic conditions such as ischemia induce the rupture of the mitochondrial envelope and the release of pro-apoptotic proteins, leading to cell death. At the onset of this process, the inner mitochondrial membrane becomes depolarized and permeable to osmolytes, proposedly due to the opening of a non-selective protein channel of unknown molecular identity. A recent study purports that this channel, referred to as Mitochondrial Permeability Transition Pore (MPTP), is formed within the c-subunit ring of the ATP synthase, upon its dissociation from the catalytic domain of the enzyme. Here, we examine this claim for two c-rings of different lumen width, through calculations of their ion conductance and selectivity based on all-atom molecular dynamics simulations. We also quantify the likelihood that the lumen of these c-rings is in a hydrated, potentially conducting state rather than empty or blocked by lipid molecules. These calculations demonstrate that the structure and biophysical properties of a correctly assembled c-ring are inconsistent with those attributed to the MPTP.


Sign in / Sign up

Export Citation Format

Share Document