scholarly journals Proton Conduction Path in Rb3H(SeO4)2Studied by High Temperature Neutron Single Crystal Diffraction

Author(s):  
Ryoji Kiyanagi ◽  
Yoshihisa Ishikawa ◽  
Yukio Noda
Minerals ◽  
2019 ◽  
Vol 10 (1) ◽  
pp. 38
Author(s):  
Rafał Juroszek ◽  
Biljana Krüger ◽  
Irina Galuskina ◽  
Hannes Krüger ◽  
Martina Tribus ◽  
...  

The crystal structure of bentorite, ideally Ca6Cr2(SO4)3(OH)12·26H2O, a Cr3+ analogue of ettringite, is for the first time investigated using X-ray single crystal diffraction. Bentorite crystals of suitable quality were found in the Arad Stone Quarry within the pyrometamorphic rock of the Hatrurim Complex (Mottled Zone). The preliminary semi-quantitative data on the bentorite composition obtained by SEM-EDS show that the average Cr/(Cr + Al) ratio of this sample is >0.8. Bentorite crystallizes in space group P31c, with a = b = 11.1927(5) Å, c =21.7121(10) Å, V = 2355.60(18) Å3, and Z = 2. The crystal structure is refined, including the hydrogen atom positions, to an agreement index R1 = 3.88%. The bentorite crystal chemical formula is Ca6(Cr1.613Al0.387)Σ2[(SO4)2.750(CO3)0.499]Σ3.249(OH)11.502·~25.75H2O. The Raman spectra of bentorite from two different localities exhibit the presence of the main stretching and bending vibrations related to the sulfate group at 983 cm−1 (ν1), 1109 cm−1 (ν3), 442 cm−1 (ν2), and 601 cm−1 (ν4). Moreover, the presence of bands assigned to the symmetric Cr(OH)63− stretching mode and hydroxyl deformation vibrations of Cr–OH units at ~540 cm−1 and ~757 cm−1, respectively, may be used to distinguish between ettringite and bentorite. In situ high temperature single crystal XRD experiments show that the decomposition of bentorite starts at ca. 45 °C and that a dehydroxylation product similar to metaettringite is formed.


2014 ◽  
Vol 70 (a1) ◽  
pp. C79-C79
Author(s):  
Akira Yoshiasa ◽  
Akihiko Nakatsuka ◽  
Maki Okube ◽  
Tomoo Katsura

The high-temperature clinoenstatite (HT-CEn) is one of the important MgSiO3 pyroxene polymorph. The single-crystal of C2/c HT-CEn endmember is firstly synthesized by rapid pressure-temperature quenching from 15-16 GPa and 900-19000C [1]. No report that it is produced as single crystal or large domain has been made on the MgSiO3 endmember. The HT-CEn-type modifications are observed in Ca-poor Mg-Fe clinoenstatite and pigeonite and are always found to be unquenchable in rapid cooling. The high pressure and high temperature experiments of MgSiO3 composition were carried out with a Kawai-type multi-anvil apparatus. The samples were quenched by rapidly releasing the oil pressure load and/or by blow out of anvil cell gasket. The space group of C2/c is strictly determined by Rigaku RAPID Weissenberg photographs and synchrotron radiation. Single-crystal X-ray diffraction experiments were performed at ambient conditions using a Rigaku AFC-5 four circle diffractometer. A total of 9383 reflections was measured and averaged in Laue symmetry 2/m to give 766 independent reflections used for the structure refinements. Final reliability factors converged smoothly to R = 0.029. The single-crystal diffraction analysis shows that the unusual bonding distances frozen in this metastable structure. The degree of kinking of the silicate tetrahedral chains is 1750for HT-CEn. The chain angle for HP-CEn is substantially smaller (1350) and the angle for L-CEn turned to the opposite direction at -1600(=2000). The degree of kinking increases by being curved in more than 1800in the transition from HT-CEn to L-CEn. As for the reverse change from the expansion to the stretch, a potential barrier exists in the point of the continuity. It is suggested that the reason which can quench structure under ambient conditions is the present HT-CEn single crystal was formed by the isosymmetric phase transition from HP-CEn. HT-CEn type single-crystals cannot be frozen without pressure.


2014 ◽  
Vol 70 (a1) ◽  
pp. C1359-C1359
Author(s):  
Ryoji Kiyanagi ◽  
Yasumitsu Matsuo ◽  
Yoshihisa Ishikawa ◽  
Yukio Noda ◽  
Takashi Ohhara ◽  
...  

The materials represented as M3H(XO4)2 (M = alkaline metal, X = S or Se) are known to exhibit high protonic conductivities at moderately high temperature. The high protonic conductivity emerges upon a structural phase transition and hydrogen bonds become directionally disordered. The protonic conduction is presumably realized through the disordered hydrogen bonds, but no experimental evidence has been reported. Meanwhile, although the mechanism of the protonic conduction is considered to be the same among this group of materials, the transition temperature (Tc) varies depending on the elements of M and X. For example, the material with M = Rb and X = Se undergoes the transition at 440 K while with M = K and X = Se the transition occurs at 390 K. Since the chemical characteristics of Rb and K are, as a principal, the same, some structural features may play crucial roles in triggering the phase transition. In order to clarify the mechanism of the proton conduction in the superprotonic phase and the relation between the crystal structure and Tc, structural studies on Rb3H(SeO4)2 at high temperature and solid solutions of Rb3H(SeO4)2 and K3H(SeO4)2 (Rb3-xKxH(SeO4)2, x=0,1,2,3) were conducted by means of single crystal neutron diffraction at FONDER at JRR-3M and SENJU at J-PARC/MLF. The proton density distribution map obtained from the high temperature neutron diffraction experiment clearly demonstrates 2-dimensional continuous spread of the proton distribution, which is considered to be the proton conduction path (figure). The structure analyses of Rb3-xKxH(SeO4)2 revealed that K ions tend to occupy one of two possible sites. As the concentration of K ion increases, the distortion of SeO4 appears to be enhanced. The variation of the distortion is consistent with the variation of the transition temperature, suggesting the close relationship between the distortion and the phase transition temperature.


2009 ◽  
Vol 64 (5) ◽  
pp. 491-498 ◽  
Author(s):  
Stephanie C. Neumair ◽  
Hubert Huppertz

Fe2B2O5, synthesized under mild high-pressure / high-temperature conditions of 3 GPa and 960 ◦C, possesses a structure isotypic to the triclinic pyroborates M2B2O5 with M = Mg, Mn, Co, and Cd. Although the parameter pressure is not essential to the synthesis of Fe2B2O5, the specific conditions enhance the crystallinity of the product. Therefore, the crystal structure of the iron pyroborate Fe2B2O5 could be determined via single crystal diffraction data [space group P1̄ (Z = 4) with the parameters a = 323.1(1), b = 615.7(2), c = 935.5(2) pm, α = 104.70(3), β = 90.82(3), γ = 91.70(3)◦, V = 0.1799(1) nm3, R1 = 0.0409, and wR2 = 0.0766 (all data)]. The structure is built up from layers of isolated pyroborate units ([B2O5]4−), which are composed of two corner-sharing BO3 triangles. These pyroborate layers serve to bridge 4×1 ribbons of edge-sharing FeO6 octahedra by both edgeand corner-sharing.


Sign in / Sign up

Export Citation Format

Share Document