Boron-doped Diamond Superconducting Quantum Interference Devices with Two Step-Edge Josephson Junctions

2017 ◽  
Author(s):  
I. Tsuyuzaki ◽  
T. Kageura ◽  
M. Hideko ◽  
Y. Sasama ◽  
T. Yamaguchi ◽  
...  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Taisuke Kageura ◽  
Masakuni Hideko ◽  
Ikuto Tsuyuzaki ◽  
Aoi Morishita ◽  
Akihiro Kawano ◽  
...  

Abstract Superconducting quantum interference devices (SQUIDs) are currently used as magnetic flux detectors with ultra-high sensitivity for various applications such as medical diagnostics and magnetic material microstructure analysis. Single-crystalline superconducting boron-doped diamond is an excellent candidate for fabricating high-performance SQUIDs because of its robustness and high transition temperature, critical current density, and critical field. Here, we propose a fabrication process for a single-crystalline boron-doped diamond Josephson junction with regrowth-induced step edge structure and demonstrate the first operation of a single-crystalline boron-doped diamond SQUID above 2 K. We demonstrate that the step angle is a significant parameter for forming the Josephson junction and that the step angle can be controlled by adjusting the microwave plasma-enhanced chemical vapour deposition conditions of the regrowth layer. The fabricated junction exhibits superconductor–weak superconductor–superconductor-type behaviour without hysteresis and a high critical current density of 5800 A/cm2.


Author(s):  
M.J. Martínez-Pérez ◽  
R. Kleiner ◽  
D. Koelle

This article discusses the use of nanoSQUIDs for investigating small magnetic systems. It begins with an overview of the basics of superconducting quantum interference devices, focusing on how a dc SQUID operates and the use of resistively and capacitively shunted junction model to describe the phase dynamics of Josephson junctions (JJs). It then considers the motivation for using nanoSQUIDs, along with the importance of their size and geometry. It also evaluates micro- and nanoSQUIDs made of various types of JJs including nanoSQUIDs based on sandwich-like junctions, constriction-like junctions, and proximized structures. After reviewing different nanoSQUID readout methods that can be used to directly sense the stray magnetic field created by a nanoscale magnetic sample, the article concludes by highlighting some of the practical constraints and challenges encountered in using nanoSQUID technology, including particle positioning with respect to the sensor’s surface.


Sign in / Sign up

Export Citation Format

Share Document