scholarly journals Design and Analysis of Nanoantenna Arrays for Imaging and Sensing Applications at Optical Frequencies

2019 ◽  
Vol 8 (2) ◽  
pp. 18-27 ◽  
Author(s):  
O. Ergul ◽  
G. Isiklar ◽  
I. C. Cetin ◽  
M. Algun

We present computational analysis of nanoantenna arrays for imaging and sensing applications at optical frequencies. Arrays of metallic nanoantennas are considered in an accurate simulation environment based on surface integral equations and the multilevel fast multipole algorithm developed for plasmonic structures. Near-zone responses of the designed arrays to nearby nanoparticles are investigated in detail to demonstrate the feasibility of detection. We show that both metallic and dielectric nanoparticles, even with subwavelength dimensions, can be detected.

2018 ◽  
Vol 915 ◽  
pp. 202-206
Author(s):  
Şirin Yazar ◽  
Cem Gürkan Sür ◽  
Birol Solak ◽  
Ömer Eroğlu ◽  
Aşkın Altınoklu ◽  
...  

We present computational analysis of optical nanostructures, including but not limited to frequency-selective surfaces, metamaterials, nanoantennas, nanowires, and photonic crystals. A rigorous implementation based on surface integral equations and the multilevel fast multipole algorithm is developed for the analysis of such three-dimensional complex structures, without resorting to infinity, self-similarity, periodicity or homogeneity assumptions. The developed simulation environment provides accurate analysis of nanooptical structures to expand our knowledge on these important components of the state-of-the-art technology.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Zhiwei Liu ◽  
Dan Tang ◽  
Zhanyang Zhang ◽  
Yueyuan Zhang ◽  
Xiaoli Wang ◽  
...  

Electromagnetic nondestructive evaluation of underground targets is of great significance for the safety of urban construction. Based on the accurate and efficient simulation of scattering, we can detect the underground targets successfully. As one of the most popular numerical methods in electromagnetics, surface integral equations solved by method of moments (MoM) are used to simulate the scattering from underground targets in this paper. The integral equation is discretized by RWG basis and Galerkin testing. Multilevel fast multipole algorithm (MLFMA) is used to decrease the computation complexity and memory cost. However, the octree used in MLFMA is not applied for rough surfaces and targets together; both the surface and target need to construct octree separately. Since the combination of MLFMA and ACA can build a more efficient method to compute scattering from underground targets, adaptive cross approximation (ACA) is used to compress the impedance matrix instead of MLFMA for the coupling action between the rough surface and target. That is to say that, when calculating the scattering of two targets, target self-interaction is suitable for MLFMA calculation and the coupling between targets is approximated by ACA. Numerical results demonstrate the accuracy and efficiency of our proposed method.


Sign in / Sign up

Export Citation Format

Share Document