scholarly journals A Bayesian brain model of adaptive behavior: an application to the Wisconsin Card Sorting Task

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e10316
Author(s):  
Marco D’Alessandro ◽  
Stefan T. Radev ◽  
Andreas Voss ◽  
Luigi Lombardi

Adaptive behavior emerges through a dynamic interaction between cognitive agents and changing environmental demands. The investigation of information processing underlying adaptive behavior relies on controlled experimental settings in which individuals are asked to accomplish demanding tasks whereby a hidden regularity or an abstract rule has to be learned dynamically. Although performance in such tasks is considered as a proxy for measuring high-level cognitive processes, the standard approach consists in summarizing observed response patterns by simple heuristic scoring measures. With this work, we propose and validate a new computational Bayesian model accounting for individual performance in the Wisconsin Card Sorting Test (WCST), a renowned clinical tool to measure set-shifting and deficient inhibitory processes on the basis of environmental feedback. We formalize the interaction between the task’s structure, the received feedback, and the agent’s behavior by building a model of the information processing mechanisms used to infer the hidden rules of the task environment. Furthermore, we embed the new model within the mathematical framework of the Bayesian Brain Theory (BBT), according to which beliefs about hidden environmental states are dynamically updated following the logic of Bayesian inference. Our computational model maps distinct cognitive processes into separable, neurobiologically plausible, information-theoretic constructs underlying observed response patterns. We assess model identification and expressiveness in accounting for meaningful human performance through extensive simulation studies. We then validate the model on real behavioral data in order to highlight the utility of the proposed model in recovering cognitive dynamics at an individual level. We highlight the potentials of our model in decomposing adaptive behavior in the WCST into several information-theoretic metrics revealing the trial-by-trial unfolding of information processing by focusing on two exemplary individuals whose behavior is examined in depth. Finally, we focus on the theoretical implications of our computational model by discussing the mapping between BBT constructs and functional neuroanatomical correlates of task performance. We further discuss the empirical benefit of recovering the assumed dynamics of information processing for both clinical and research practices, such as neurological assessment and model-based neuroscience.


2020 ◽  
pp. 1-21
Author(s):  
Francisco Barceló

For decades, a common assumption in cognitive neuroscience has been that prefrontal executive control is mainly engaged during target detection [Posner, M. I., & Petersen, S. E. The attention system of the human brain. Annual Review of Neuroscience, 13, 25–42, 1990]. More recently, predictive processing theories of frontal function under the Bayesian brain hypothesis emphasize a key role of proactive control for anticipatory action selection (i.e., planning as active inference). Here, we review evidence of fast and widespread EEG and magnetoencephalographic fronto-temporo-parietal cortical activations elicited by feedback cues and target cards in the Wisconsin Card Sorting Test. This evidence is best interpreted when considering negative and positive feedback as predictive cues (i.e., sensory outcomes) for proactively updating beliefs about unknown perceptual categories. Such predictive cues inform posterior beliefs about high-level hidden categories governing subsequent response selection at target onset. Quite remarkably, these new views concur with Don Stuss' early findings concerning two broad classes of P300 cortical responses evoked by feedback cues and target cards in a computerized Wisconsin Card Sorting Test analogue. Stuss' discussion of those P300 responses—in terms of the resolution of uncertainty about response (policy) selection as well as the participants' expectancies for future perceptual or motor activities and their timing—was prescient of current predictive processing and active (Bayesian) inference theories. From these new premises, a domain-general frontoparietal cortical network is rapidly engaged during two temporarily distinct stages of inference and learning of perceptual categories that underwrite goal-directed card sorting behavior, and they each engage prefrontal executive functions in fundamentally distinct ways.





Sign in / Sign up

Export Citation Format

Share Document