scholarly journals The effects of genetic drift and genomic selection on differentiation and local adaptation of the introduced populations of Aedes albopictus in southern Russia

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11776
Author(s):  
Evgenii A. Konorov ◽  
Vyacheslav Yurchenko ◽  
Ivan Patraman ◽  
Alexander Lukashev ◽  
Nadezhda Oyun

Background Asian tiger mosquito Aedes albopictus is an arbovirus vector that has spread from its native habitation areal in Southeast Asia throughout North and South Americas, Europe, and Africa. Ae. albopictus was first detected in the Southern Federal District of the Russian Federation in the subtropical town of Sochi in 2011. In subsequent years, this species has been described in the continental areas with more severe climate and lower winter temperatures. Methods Genomic analysis of pooled Ae. albopictus samples collected in the mosquito populations in the coastal and continental regions of the Krasnodar Krai was conducted to look for the genetic changes associated with the spread and potential cold adaptation in Ae. albopictus. Results The results of the phylogenetic analysis based on mitochondrial genomes corresponded well with the hypothesis that Ae. albopictus haplotype A1a2a1 was introduced into the region from a single source. Population analysis revealed the role of dispersal and genetic drift in the local adaptation of the Asian tiger mosquito. The absence of shared haplotypes between the samples and high fixation indices suggest that gene flow between samples was heavily restricted. Mitochondrial and genomic differentiation together with different distances between dispersal routes, natural and anthropogenic barriers and local effective population size reduction could lead to difficulties in local climatic adaptations due to reduced selection effectiveness. We have found genomic regions with selective sweep patterns which can be considered as having been affected by recent selection events. The genes located in these regions participate in neural protection, lipid conservation, and cuticle formation during diapause. These processes were shown to be important for cold adaptation in the previous transcriptomic and proteomic studies. However, the population history and relatively low coverage obtained in the present article could have negatively affect sweep detection.

2019 ◽  
Author(s):  
Maria Vittoria Mancini ◽  
Christie S. Herd ◽  
Thomas H. Ant ◽  
Shivan M. Murdochy ◽  
Steven P. Sinkins

AbstractThe global incidence of arboviral diseases transmitted by Aedes mosquitoes, including dengue, chikungunya, yellow fever, and Zika, has increased dramatically in recent decades. The release of Aedes aegypti carrying the maternally inherited symbiont Wolbachia as an intervention to control arboviruses is being trialled in several countries. However, these efforts are compromised in many endemic regions due to the co-localization of the secondary vector Aedes albopictus, the Asian tiger mosquito. Ae. albopictus has an expanding global distribution following incursions into a number of new territories. To date, only the wMel and wPip strains of Wolbachia have been reported to be transferred into and characterized in this vector. A Wolbachia strain naturally infecting Drosophila simulans, wAu, was selected for transfer into a Malaysian Ae. albopictus line to create a novel triple-strain infection. The newly generated line showed self-compatibility, moderate fitness cost and complete resistance to Zika and dengue infections.Author summaryAedes albopictus, the invasive Asian tiger mosquito, is responsible for numerous outbreaks of important viruses such as dengue and Zika in various regions of the world. The need for alterative control interventions propelled the development of a novel approach that exploits a natural insect symbiont, Wolbachia; when transferred into non-native hosts, these maternally-inherited bacteria are able to interfere with the transmission of mosquito-borne viruses, and also provide reproductive advantages to the host, offering a promising tool for self-sustaining field applications. Currently, several field trials are ongoing for the primary vector of dengue and several other arboviruses, Aedes aegypti, providing encouraging results. In this study, Ae. albopictus has been targeted for a similar approach: this mosquito species naturally carries two strains of Wolbachia. The artificial introduction of a third, non-native strain made this line less able to transmit dengue and Zika viruses and had an impact on its fitness.


2020 ◽  
Vol 35 ◽  
pp. 101691 ◽  
Author(s):  
Romeo Bellini ◽  
Antonios Michaelakis ◽  
Dušan Petrić ◽  
Francis Schaffner ◽  
Bulent Alten ◽  
...  

2020 ◽  
Vol 122 ◽  
pp. 103386 ◽  
Author(s):  
Mi Young Noh ◽  
Sung Hyun Kim ◽  
Maureen J. Gorman ◽  
Karl J. Kramer ◽  
Subbaratnam Muthukrishnan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document