scholarly journals Protein function prediction with gene ontology: from traditional to deep learning models

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12019
Author(s):  
Thi Thuy Duong Vu ◽  
Jaehee Jung

Protein function prediction is a crucial part of genome annotation. Prediction methods have recently witnessed rapid development, owing to the emergence of high-throughput sequencing technologies. Among the available databases for identifying protein function terms, Gene Ontology (GO) is an important resource that describes the functional properties of proteins. Researchers are employing various approaches to efficiently predict the GO terms. Meanwhile, deep learning, a fast-evolving discipline in data-driven approach, exhibits impressive potential with respect to assigning GO terms to amino acid sequences. Herein, we reviewed the currently available computational GO annotation methods for proteins, ranging from conventional to deep learning approach. Further, we selected some suitable predictors from among the reviewed tools and conducted a mini comparison of their performance using a worldwide challenge dataset. Finally, we discussed the remaining major challenges in the field, and emphasized the future directions for protein function prediction with GO.

2022 ◽  
Author(s):  
Musadaq Mansoor ◽  
Mohammad Nauman ◽  
Hafeez Ur Rehman ◽  
Alfredo Benso

F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 1577 ◽  
Author(s):  
Linhua Wang ◽  
Jeffrey Law ◽  
Shiv D. Kale ◽  
T. M. Murali ◽  
Gaurav Pandey

Heterogeneous ensembles are an effective approach in scenarios where the ideal data type and/or individual predictor are unclear for a given problem. These ensembles have shown promise for protein function prediction (PFP), but their ability to improve PFP at a large scale is unclear. The overall goal of this study is to critically assess this ability of a variety of heterogeneous ensemble methods across a multitude of functional terms, proteins and organisms. Our results show that these methods, especially Stacking using Logistic Regression, indeed produce more accurate predictions for a variety of Gene Ontology terms differing in size and specificity. To enable the application of these methods to other related problems, we have publicly shared the HPC-enabled code underlying this work as LargeGOPred (https://github.com/GauravPandeyLab/LargeGOPred).


2012 ◽  
Vol 2012 ◽  
pp. 1-17 ◽  
Author(s):  
Gaston K. Mazandu ◽  
Nicola J. Mulder

The wide coverage and biological relevance of the Gene Ontology (GO), confirmed through its successful use in protein function prediction, have led to the growth in its popularity. In order to exploit the extent of biological knowledge that GO offers in describing genes or groups of genes, there is a need for an efficient, scalable similarity measure for GO terms and GO-annotated proteins. While several GO similarity measures exist, none adequately addresses all issues surrounding the design and usage of the ontology. We introduce a new metric for measuring the distance between two GO terms using the intrinsic topology of the GO-DAG, thus enabling the measurement of functional similarities between proteins based on their GO annotations. We assess the performance of this metric using a ROC analysis on human protein-protein interaction datasets and correlation coefficient analysis on the selected set of protein pairs from the CESSM online tool. This metric achieves good performance compared to the existing annotation-based GO measures. We used this new metric to assess functional similarity between orthologues, and show that it is effective at determining whether orthologues are annotated with similar functions and identifying cases where annotation is inconsistent between orthologues.


2020 ◽  
Author(s):  
Maarten J.M.F Reijnders

AbstractBackgroundProtein function prediction is an important part of bioinformatics and genomics studies. There are many different predictors available, however most of these are in the form of web-servers instead of open-source locally installable versions. Such local versions are necessary to perform large scale genomics studies due to the presence of limitations imposed by web servers such as queues, prediction speed, and updatability of databases.MethodsThis paper describes Wei2GO: a weighted sequence similarity and python-based open-source protein function prediction software. It uses DIAMOND and HMMScan sequence alignment searches against the UniProtKB and Pfam databases respectively, transfers Gene Ontology terms from the reference protein to the query protein, and uses a weighing algorithm to calculate a score for the Gene Ontology annotations.ResultsWei2GO is compared against the Argot2 and Argot2.5 web servers, which use a similar concept, and DeepGOPlus which acts as a reference. Wei2GO shows an increase in performance according to precision and recall curves, Fmax scores, and Smin scores for biological process and molecular function ontologies. Computational time compared to Argot2 and Argot2.5 is decreased from several hours to several minutes.AvailabilityWei2GO is written in Python 3, and can be found at https://gitlab.com/mreijnders/Wei2GO


Sign in / Sign up

Export Citation Format

Share Document