scholarly journals An artificial neural network for automated behavioral state classification in rats

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e12127
Author(s):  
Jacob G. Ellen ◽  
Michael B. Dash

Accurate behavioral state classification is critical for many research applications. Researchers typically rely upon manual identification of behavioral state through visual inspection of electrophysiological signals, but this approach is time intensive and subject to low inter-rater reliability. To overcome these limitations, a diverse set of algorithmic approaches have been put forth to automate the classification process. Recently, novel machine learning approaches have been detailed that produce rapid and highly accurate classifications. These approaches however, are often computationally expensive, require significant expertise to implement, and/or require proprietary software that limits broader adoption. Here we detail a novel artificial neural network that uses electrophysiological features to automatically classify behavioral state in rats with high accuracy, sensitivity, and specificity. Common parameters of interest to sleep scientists, including state-dependent power spectra and homeostatic non-REM slow wave activity, did not significantly differ when using this automated classifier as compared to manual scoring. Flexible options enable researchers to further increase classification accuracy through manual rescoring of a small subset of time intervals with low model prediction certainty or further decrease researcher time by generalizing trained networks across multiple recording days. The algorithm is fully open-source and coded within a popular, and freely available, software platform to increase access to this research tool and provide additional flexibility for future researchers. In sum, we have developed a readily implementable, efficient, and effective approach for automated behavioral state classification in rats.

2021 ◽  
pp. 146808742110323
Author(s):  
Mohammad Hossein Moradi ◽  
Alexander Heinz ◽  
Uwe Wagner ◽  
Thomas Koch

To perform a suitable optimization method in terms of emission and efficiency for an internal combustion engine, first highly accurate and possible real-time capable modeling for the transient operations should be provided. In this work, the modeling of NO x and HC raw emission (before exhaust aftertreatment systems) in a six-cylinder gasoline engine under highly transient operation was performed using machine learning approaches. Three different machine learning methods, namely Artificial Neural Network, Long Short-Term Memory, and Random Forest were used and the results of these models were compared with each other. In general, the results show a significant improvement in accuracy compared to other studies that have modeled transient operations. Furthermore, the shortcoming of Artificial Neural Network for the prediction of the HC emission by the transient operation is observed. The coefficient of determination ( R2) for the best model for NO x prediction is 0.98 and 0.97 for the training data and test data, respectively. This value is 0.9 and 0.89 for the best HC prediction model.


2020 ◽  
Vol 10 (5) ◽  
pp. 1005-1022 ◽  
Author(s):  
Shahan Yamin Siddiqui ◽  
Atifa Athar ◽  
Muhammad Adnan Khan ◽  
Sagheer Abbas ◽  
Yousaf Saeed ◽  
...  

Background: To provide ease to diagnose that serious sickness multi-technique model is proposed. Data Analytics and Machine intelligence are involved in the detection of various diseases for human health care. The computer is used as a tool by experts in the medical field, and the computer-based mechanism is used to diagnose different diseases in patients with high Precision. Due to revolutionary measures employed in Artificial Neural Networks (ANNs) within the research domain in the medical area, which appear to be in the data-driven applications usually described in the domain of health care. Cardio sickness according to name is a type of an ailment that is directly connected to the human heart and blood circulation setup, so it should be diagnosed on time because the delay of diagnosing of that disease may lead the sufferer to death. The research is mainly aimed to design a system that will be able to detect cardiovascular sickness in the sufferer using machine learning approaches. Objective: The main objective of the research is to gather information of the six parameters that is age, chest pain, electrocardiogram, systolic blood pressure, fasting blood sugar and serum cholesterol are used by Mamdani fuzzy expert to detect cardiovascular sickness. To propose a type of device which will be successfully used in overcoming the cardiovascular diseases. This proposed model Diagnosis Cardiovascular Disease using Mamdani Fuzzy Inference System (DCD-MFIS) shows 87.05 percent Precision. To delineate an effective Neural Network Model to predict with greater precision, whether a person is suffering from cardiovascular disease or not. As the ANN is composed of various algorithms, some will be handed down for the training of the network. The main target of the research is to make the use of three techniques, which include fuzzy logic, neural network, and deep machine learning. The research will employ the three techniques along with the previous comparisons, and given that, the results will be compared respectively. Methods: Artificial neural network and deep machine learning techniques are applied to detect cardiovascular sickness. Both techniques are applied using 13 parameters age, gender, chest pain, systolic blood pressure, serum cholesterol, fasting blood sugar, electrocardiogram, exercise including angina, heart rate, old peak, number of vessels, affected person and slope. In this research, the ANN-based research is one of the algorithms collections, which is the detection of cardiovascular diseases, is proposed. ANN constitutes of many algorithms, some of the algorithms are employed in the paper for the training of the network used, to achieve the prediction ratio and in contrast of the comparison of the mutual results shown. Results: To make better analysis and consideration of the three frameworks, which include fuzzy logic, ANN, Deep Extreme Machine Learning. The proposed automated model Diagnosis Cardiovascular Disease includes Fuzzy logic using Mamdani Fuzzy Inference System (DCD-MFIS), Artificial Neural Network (DCD–ANN) and Deep Extreme Machine Learning (DCD–DEML) approach using back propagation system. These frameworks help in attaining greater precision and accuracy. Proposed DCD Deep Extreme Machine Learning attains more accuracy with previously proposed solutions that are 92.45%. Conclusion: From the previous comparisons, the propose automated Diagnosis of Cardiovascular Disease using Fuzzy logic, Artificial Neural Network, and deep extreme machine learning approaches. The automated systems DCDMFIS, DCD–ANN and DCD–DEML, the framework proposed as effective and efficient with 87.05%, 89.4% and 92.45 % success ratios respectively. To verify the performance which lies in the ANNs and computational analysis, many indicators determining the precise performance were calculated. The training of the neural networks is made true using the 10 to 20 neurons layers which denote the hidden layer. DEML reveals and indicates a hidden layer containing 10 neurons, which shows the best result. In the last, we can conclude that after making a consideration among the three techniques fuzzy logic, Artificial Neural Network and Proposed DCD Deep Extreme Machine, the Proposed DCD Deep Extreme Machine Learning based solution give more accuracy with previously proposed solutions that are 92.45%.


2000 ◽  
Vol 25 (4) ◽  
pp. 325-325
Author(s):  
J.L.N. Roodenburg ◽  
H.J. Van Staveren ◽  
N.L.P. Van Veen ◽  
O.C. Speelman ◽  
J.M. Nauta ◽  
...  

2004 ◽  
Vol 171 (4S) ◽  
pp. 502-503
Author(s):  
Mohamed A. Gomha ◽  
Khaled Z. Sheir ◽  
Saeed Showky ◽  
Khaled Madbouly ◽  
Emad Elsobky ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document