scholarly journals PBxplore: a tool to analyze local protein structure and deformability with Protein Blocks

PeerJ ◽  
2017 ◽  
Vol 5 ◽  
pp. e4013 ◽  
Author(s):  
Jonathan Barnoud ◽  
Hubert Santuz ◽  
Pierrick Craveur ◽  
Agnel Praveen Joseph ◽  
Vincent Jallu ◽  
...  

This paper describes the development and application of a suite of tools, called PBxplore, to analyze the dynamics and deformability of protein structures using Protein Blocks (PBs). Proteins are highly dynamic macromolecules, and a classical way to analyze their inherent flexibility is to perform molecular dynamics simulations. The advantage of using small structural prototypes such as PBs is to give a good approximation of the local structure of the protein backbone. More importantly, by reducing the conformational complexity of protein structures, PBs allow analysis of local protein deformability which cannot be done with other methods and had been used efficiently in different applications. PBxplore is able to process large amounts of data such as those produced by molecular dynamics simulations. It produces frequencies, entropy and information logo outputs as text and graphics. PBxplore is available at https://github.com/pierrepo/PBxplore and is released under the open-source MIT license.

2017 ◽  
Author(s):  
Jonathan Barnoud ◽  
Hubert Santuz ◽  
Pierrick Craveur ◽  
Agnel Praveen Joseph ◽  
Vincent Jallu ◽  
...  

ABSTRACTProteins are highly dynamic macromolecules. A classical way to analyze their inner flexibility is to perform molecular dynamics simulations. In this context, we present the advantage to use small structural prototypes, namely the Protein Blocks (PBs). PBs give a good approximation of the local structure of the protein backbone. More importantly, by reducing the conformational complexity of protein structures, they allow analyzes of local protein deformability which cannot be done with other methods and had been used efficiently in different applications. PBxplore is a suite of tools to analyze the dynamics and deformability of protein structures using PBs. It is able to process large amount of data such as those produced by molecular dynamics simulations. It produces various outputs with text and graphics, such as frequencies, entropy and information logo. PBxplore is available at https://github.com/pierrepo/PBxplore and is released under the open-source MIT license.


2021 ◽  
Author(s):  
Martin P. Lautenschlaeger ◽  
Hans Hasse

It was shown recently that using the two-gradient method, thermal, caloric, and transport properties of fluids under quasi-equilibrium conditions can be determined simultaneously from nonequilibrium molecular dynamics simulations. It is shown here that the influence of shear stresses on these properties can also be studied using the same method. The studied fluid is described by the Lennard-Jones truncated and shifted potential with the cut-off radius r*c = 2.5σ. For a given temperature T and density ρ, the influence of the shear rate on the following fluid properties is determined: pressure p, internal energy u, enthalpy h, isobaric heat capacity cp, thermal expansion coefficient αp, shear viscosity η, and self-diffusion coefficient D. Data for 27 state points in the range of T ∈ [0.7, 8.0] and ρ ∈ [0.3, 1.0] are reported for five different shear rates (γ ̇ ∈ [0.1,1.0]). Correlations for all properties are provided and compared with literature data. An influence of the shear stress on the fluid properties was found only for states with low temperature and high density. The shear-rate dependence is caused by changes in the local structure of the fluid which were also investigated in the present work. A criterion for identifying the regions in which a given shear stress has an influence on the fluid properties was developed. It is based on information on the local structure of the fluid. For the self-diffusivity, shear-induced anisotropic effects were observed and are discussed.


Soft Matter ◽  
2021 ◽  
Author(s):  
Rakesh K Vaiwala ◽  
Ganapathy Ayappa

A coarse-grained force field for molecular dynamics simulations of native structures of proteins in a dissipative particle dynamics (DPD) framework is developed. The parameters for bonded interactions are derived by...


Sign in / Sign up

Export Citation Format

Share Document