scholarly journals Effect of insecticide formulation and adjuvant combination on agricultural spray drift

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7136 ◽  
Author(s):  
Collin J. Preftakes ◽  
Jerome J. Schleier ◽  
Greg R. Kruger ◽  
David K. Weaver ◽  
Robert K.D. Peterson

Loss of crop protection products when agricultural spray applications drift has economic and ecological consequences. Modification of the spray solution through tank additives and product formulation is an important drift reduction strategy that could mitigate these effects, but has been studied less than most other strategies. Therefore, an experimental field study was conducted to evaluate spray drift resulting from agricultural ground applications of an insecticide formulated as a suspension concentrate (SC) and as a wettable powder (WP), with and without two adjuvants. Droplet sizes were also measured in a wind tunnel to determine if indirect methods could be substituted for field experimentation to quantify spray drift from these technologies. Results suggest that spray drift was reduced by 37% when comparing the SC to the WP formulation. As much as 63% drift reduction was achieved by incorporating certain spray adjuvants, but this depended on the formulation/adjuvant combination. The wind tunnel data for droplet spectra showed strong agreement with field deposition trends, suggesting that droplet statistics could be used to estimate drift reduction of spray solutions. These findings can be used to develop a classification scheme for formulated products and tank additives based on their potential for reducing spray drift.

2014 ◽  
Vol 34 (1) ◽  
pp. 66-73 ◽  
Author(s):  
Marco A. Gandolfo ◽  
Fernando K. Carvalho ◽  
Rodolfo G. Chechetto ◽  
Ulisses D. Gandolfo ◽  
Eder D. de Moraes

Each year, there is an increase in pesticide consumption and in its importance of use in the large-scale agricultural production, being fundamental the knowledge of application technology to the activity success. The objective of the present study was to evaluate the influence of working pressure on the drift generated by different spray nozzles, assessed in wind tunnel. The treatments were composed of two spray nozzles AXI 110015 and AXI 11002 with pressure levels of 276 and 414 kPa. The spray solution was composed by water and NaCl at 10%. The applications were conducted at wind speed of 2.0 m s-1, being the drift collected at 5.0; 10.0 and 15.0 m away from the spray boom and at heights of 0.2; 0.4; 0.6; 0.8 e 1.0 m from the tunnel floor. To both spray nozzles, the greatest drift was collected at the smallest distance to the spray-boom and at the lowest height. The AXI 11002 nozzle gave a smaller drift relative to the AXI 110015 nozzle for the two tested pressures and for all the collection points. Regardless of the nozzle, a rise in the working pressure increases the spray drift percentage at all distances in the wind tunnel.


1982 ◽  
Author(s):  
G. WINCHENBACH ◽  
R. CHELEKIS ◽  
B. USELTON ◽  
W. HATHAWAY

1997 ◽  
Author(s):  
Charles Campbell ◽  
Jose Caram ◽  
Scott Berry ◽  
Michael DiFulvio ◽  
Tom Horvath ◽  
...  

2009 ◽  
Vol 43 (39) ◽  
pp. 6238-6253 ◽  
Author(s):  
Elsa Aristodemou ◽  
Tom Bentham ◽  
Christopher Pain ◽  
Roy Colvile ◽  
Alan Robins ◽  
...  

1995 ◽  
Author(s):  
G. M. Le Good ◽  
J. P. Howell ◽  
M. A. Passmore ◽  
K. P. Garry

Sign in / Sign up

Export Citation Format

Share Document