scholarly journals Mitochondrial genomics of human pathogenic parasiteLeishmania(Viannia)panamensis

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7235 ◽  
Author(s):  
Daniel Alfonso Urrea ◽  
Omar Triana-Chavez ◽  
Juan F. Alzate

BackgroundThe human parasiteLeishmania (V.) panamensisis one of the pathogenic species responsible for cutaneous leishmaniasis in Central and South America. Despite its importance in molecular parasitology, its mitochondrial genome, divided into minicircles and maxicircles, haven’t been described so far.MethodsUsing NGS-based sequencing (454 and ILLUMINA), and combiningde novogenome assembly and mapping strategies, we report the maxicircle kDNA annotated genome ofL. (V.) panamensis, the first reference of this molecule for the subgenusViannia. A comparative genomics approach is performed against otherLeishmaniaandTrypanosomaspecies.ResultsThe results show synteny of mitochondrial genes ofL. (V.) panamensiswith other kinetoplastids. It was also possible to identify nucleotide variants within the coding regions of the maxicircle, shared among some of them and others specific to each strain. Furthermore, we compared the minicircles kDNA sequences of two strains and the results show that the conserved and divergent regions of the minicircles exhibit strain-specific associations.

Animals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1065
Author(s):  
Laura Iacolina ◽  
Elena Buzan ◽  
Toni Safner ◽  
Nino Bašić ◽  
Urska Geric ◽  
...  

Although the two species of chamois (Rupicapra rupicapra and R. pyrenaica) are currently classified as least-concern by the IUCN (International Union for Conservation of Nature), inconsistencies on the subspecies classification reported in literature make it challenging to assess the conservation status of the single subspecies. Previous studies relying on mitochondrial genes, sometimes in combination with nuclear or Y-chromosome markers, reported the presence of clusters corresponding to the geographic distribution but highlighting ambiguities in the genus phylogeny. Here we report novel de novo assembled sequences of the mitochondrial genome from nine individuals, including previously unpublished R. r. balcanica and R. r. tatrica subspecies, and use them to untangle the genus phylogeny. Our results based on the full mitogenome inferred phylogeny confirm the previously reported genus subdivision in three clades and its monophyletic positioning within the Caprinae. Phylogeny and taxonomy of Rupicapra species thus remain controversial prompting for the inclusion of archeological remains to solve the controversy.


Circulation ◽  
2021 ◽  
Vol 144 (Suppl_2) ◽  
Author(s):  
Nicholas S Wilcox ◽  
Stuart Prenner ◽  
Marisa Cevasco ◽  
Courtney Condit ◽  
Amy Goldstein ◽  
...  

Case Presentation: A 29-year-old male with LVH diagnosed in childhood was admitted with acute HF. TTE showed LVEF 5-10% and LV thrombi for which he was anticoagulated. He received inappropriate ICD shocks due to T wave oversensing, leading to cardiogenic shock requiring VA-ECMO support. Serum lactate peaked at 17 mmol/L due to cardiac and metabolic decompensation. He underwent heart transplantation (HT) on hospital day (HD) 8 and tolerated standard immunosuppression. First endomyocardial biopsy showed acute cellular rejection requiring pulse steroids. He was discharged on HD 33. Trio whole exome and mitochondrial genome sequencing revealed biallelic variants in complement component 1Q subcomponent-binding protein ( C1QBP ), due to a maternally inherited likely pathogenic variant c.612C>G (p.F204L in exon 5) and an apparently de novo deletion of 17p13.2, spanning exons 4-6 of C1QBP and exon 6 of the RPAIN gene. Mitochondrial genome sequencing of the explanted heart revealed multiple large-scale mitochondrial DNA deletions at 33% heteroplasmy. Discussion: C1QBP variants are associated with mitochondrial and multi-organ dysfunction. Only 12 patients exhibiting biallelic C1QBP variants are reported. Four died in the peripartum period due to fetal hydrops or HF; 5 exhibited early-onset cardiomyopathy (CM); 3 others had late-onset ophthalmoplegia without CM. The p.F204L variant has been reported in 1 patient with compound C1QBP p.F204L/p.C186S heterozygosity who died from hydrops fetalis and a second with p.F204L homozygosity with late-onset ophthalmoplegia and skeletal myopathy without CM. Differences in the size, heteroplasmy, and tissue distribution of mitochondrial genome secondary deletions may explain variability in disease onset and progression. We present the first patient with biallelic pathogenic C1QBP gene variants with mitochondrial CM to undergo HT and highlight the diagnosis and management of an exceptionally uncommon genetic disorder.


2020 ◽  
Author(s):  
Graham Etherington

De novo assembly of 49 mustelid whole mitochondrial genomes


1990 ◽  
pp. 19-22
Author(s):  
R. I. Salganik ◽  
N. A. Dudareva ◽  
A. V. Popovsky ◽  
E. V. Kiseleva ◽  
S. M. Rozov

2021 ◽  
Author(s):  
Haikun Li ◽  
Ruihai Yu ◽  
Peizhen Ma ◽  
Chunhua Li

Abstract The complete mitochondrial genome of Cultellus attenuates, a new aquaculture species, was sequenced and compared with mitogenomes from seven species of Heterodonta bivalve mollusk in the gene bank. The mitochondrial genome of C. attenuatus is 16888bp in length and contains 36 genes, including 12 protein-coding genes, 2 ribosomal RNAs and 22 transfer RNAs, and all genes are encoded on the same strand. In comparison with C. attenuates, the mitochondrial genes of the Sinonovacula constricta from the same family were not rearranged, but those of six other species from different family were rearranged to different degrees. The largest non-coding region of C. attenuatus is 1173bp in length and with the A + T content of 68.24%, located between nad2 and trnK. The results of phylogenetic analysis show that the C. attenuates and the S. constricta belonging to Cultellidae cluster into one branch while two species of Solenidae ( Solen grandis and Solen strictus) are clustering as their sister taxon. These data not only contribute to the understanding of the phylogenetic relationship of the Heterodonta, but also serve as a resource for the development of the genetic markers in aquaculture.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e9309
Author(s):  
Viktoria Yu Shtratnikova ◽  
Mikhail I. Schelkunov ◽  
Aleksey A. Penin ◽  
Maria D. Logacheva

Heterotrophic plants—plants that have lost the ability to photosynthesize—are characterized by a number of changes at all levels of organization. Heterotrophic plants are divided into two large categories—parasitic and mycoheterotrophic (MHT). The question of to what extent such changes are similar in these two categories is still open. The plastid genomes of nonphotosynthetic plants are well characterized, and they exhibit similar patterns of reduction in the two groups. In contrast, little is known about the mitochondrial genomes of MHT plants. We report the structure of the mitochondrial genome of Hypopitys monotropa, a MHT member of Ericaceae, and the expression of its genes. In contrast to its highly reduced plastid genome, the mitochondrial genome of H. monotropa is larger than that of its photosynthetic relative Vaccinium macrocarpon, and its complete size is ~810 Kb. We observed an unusually long repeat-rich structure of the genome that suggests the existence of linear fragments. Despite this unique feature, the gene content of the H. monotropa mitogenome is typical of flowering plants. No acceleration of substitution rates is observed in mitochondrial genes, in contrast to previous observations in parasitic non-photosynthetic plants. Transcriptome sequencing revealed the trans-splicing of several genes and RNA editing in 33 of 38 genes. Notably, we did not find any traces of horizontal gene transfer from fungi, in contrast to plant parasites, which extensively integrate genetic material from their hosts.


2020 ◽  
Author(s):  
Agata Motyka-Pomagruk ◽  
Sabina Zoledowska ◽  
Agnieszka Emilia Misztak ◽  
Wojciech Sledz ◽  
Alessio Mengoni ◽  
...  

Abstract Background: Dickeya solani is an important plant pathogenic bacterium causing severe losses in European potato production. This species draws a lot of attention due to its remarkable virulence, great devastating potential and easier spread in contrast to other Dickeya spp. In view of a high need for extensive studies on economically important soft rot Pectobacteriaceae , we performed a comparative genomics analysis on D. solani strains to search for genetic foundations that would explain the differences in the observed virulence levels within the D. solani population. Results: High quality assemblies of 8 de novo sequenced D. solani genomes have been obtained. Whole-sequence comparison, ANIb, ANIm, Tetra and pangenome-oriented analyses performed on these genomes and the sequences of 14 additional strains revealed an exceptionally high level of homogeneity among the studied genetic material of D. solani strains. With the use of 22 genomes, the pangenome of D. solani , comprising 84.7% core, 7.2% accessory and 8.1% unique genes, has been almost completely determined, suggesting the presence of a nearly closed pangenome structure. Attribution of the genes included in the D. solani pangenome fractions to functional COG categories showed that higher percentages of accessory and unique pangenome parts in contrast to the core section are encountered in phage/mobile elements- and transcription- associated groups with the genome of RNS 05.1.2A strain having the most significant impact. Also, the first D. solani large-scale genome-wide phylogeny computed on concatenated core gene alignments is herein reported. Conclusions: The almost closed status of D. solani pangenome achieved in this work points to the fact that the unique gene pool of this species should no longer expand. Such a feature is characteristic of taxa whose representatives either occupy isolated ecological niches or lack efficient mechanisms for gene exchange and recombination, which seems rational concerning a strictly pathogenic species with clonal population structure. Finally, no obvious correlations between the geographical origin of D. solani strains and their phylogeny were found, which might reflect the specificity of the international seed potato market.


Sign in / Sign up

Export Citation Format

Share Document