scholarly journals Development of molecular markers for invasive alien plants in Korea: a case study of a toxic weed, Cenchrus longispinus L., based on next generation sequencing data

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7965
Author(s):  
JongYoung Hyun ◽  
Hoang Dang Khoa Do ◽  
Joonhyung Jung ◽  
Joo-Hwan Kim

Background Genomic data play an important role in plant research because of its implications in studying genomic evolution, phylogeny, and developing molecular markers. Although the information of invasive alien plants was collected, the genomic data of those species have not been intensively studied. Methods We employ the next generation sequencing and PCR methods to explore the genomic data as well as to develop and test the molecular markers. Results In this study, we characterize the chloroplast genomes (cpDNA) of Cenchrus longispinus and C. echinatus, of which the lengths are 137,144 and 137,131 bp, respectively. These two newly sequenced genomes include 78 protein-coding genes, 30 tRNA, and four rRNA. There are 56 simple single repeats and 17 forward repeats in the chloroplast genome of C. longispinus. Most of the repeats locate in non-coding regions. However, repeats can be found in infA, ndhD, ndhH, ndhK, psbC, rpl22, rpoC2, rps14, trnA-UGC, trnC-GCA, trnF-GAA, trnQ-UUG, trnS-UGA, trnS-GCU, and ycf15. The phylogenomic analysis revealed the monophyly of Cenchrus but not Panicum species in tribe Paniceae. The single nucleotide polymorphism sites in atpB, matK, and ndhD were successfully used for developing molecular markers to distinguish C. longispinus and related taxa. The simple PCR protocol for using the newly developed molecular markers was also provided.

2018 ◽  
Vol 16 (05) ◽  
pp. 1850018 ◽  
Author(s):  
Sanjeev Kumar ◽  
Suneeta Agarwal ◽  
Ranvijay

Genomic data nowadays is playing a vital role in number of fields such as personalized medicine, forensic, drug discovery, sequence alignment and agriculture, etc. With the advancements and reduction in the cost of next-generation sequencing (NGS) technology, these data are growing exponentially. NGS data are being generated more rapidly than they could be significantly analyzed. Thus, there is much scope for developing novel data compression algorithms to facilitate data analysis along with data transfer and storage directly. An innovative compression technique is proposed here to address the problem of transmission and storage of large NGS data. This paper presents a lossless non-reference-based FastQ file compression approach, segregating the data into three different streams and then applying appropriate and efficient compression algorithms on each. Experiments show that the proposed approach (WBFQC) outperforms other state-of-the-art approaches for compressing NGS data in terms of compression ratio (CR), and compression and decompression time. It also has random access capability over compressed genomic data. An open source FastQ compression tool is also provided here ( http://www.algorithm-skg.com/wbfqc/home.html ).


2017 ◽  
Author(s):  
Merly Escalona ◽  
Sara Rocha ◽  
David Posada

AbstractMotivationAdvances in sequencing technologies have made it feasible to obtain massive datasets for phylogenomic inference, often consisting of large numbers of loci from multiple species and individuals. The phylogenomic analysis of next-generation sequencing (NGS) data implies a complex computational pipeline where multiple technical and methodological decisions are necessary that can influence the final tree obtained, like those related to coverage, assembly, mapping, variant calling and/or phasing.ResultsTo assess the influence of these variables we introduce NGSphy, an open-source tool for the simulation of Illumina reads/read counts obtained from haploid/diploid individual genomes with thousands of independent gene families evolving under a common species tree. In order to resemble real NGS experiments, NGSphy includes multiple options to model sequencing coverage (depth) heterogeneity across species, individuals and loci, including off-target or uncaptured loci. For comprehensive simulations covering multiple evolutionary scenarios, parameter values for the different replicates can be sampled from user-defined statistical distributions.AvailabilitySource code, full documentation and tutorials including a quick start guide are available at http://github.com/merlyescalona/[email protected]. [email protected]


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Yanjun Ma

Personal genomic data constitute one important part of personal health data. However, due to the large amount of personal genomic data obtained by the next-generation sequencing technology, special tools are needed to analyze these data. In this article, we will explore a tool analyzing cloud-based large-scale genome sequencing data. Analyzing and identifying genomic variations from amplicon-based next-generation sequencing data are necessary for the clinical diagnosis and treatment of cancer patients. When processing the amplicon-based next-generation sequencing data, one essential step is removing primer sequences from the reads to avoid detecting false-positive mutations introduced by nonspecific primer binding and primer extension reactions. At present, the removing primer tools usually discard primer sequences from the FASTQ file instead of BAM file, but this method could cause some downstream analysis problems. Only one tool (BAMClipper) removes primer sequences from BAM files, but it only modified the CIGAR value of the BAM file, and false-positive mutations falling in the primer region could still be detected based on its processed BAM file. So, we developed one cutting primer tool (rmvPFBAM) removing primer sequences from the BAM file, and the mutations detected based on the processed BAM file by rmvPFBAM are highly credible. Besides that, rmvPFBAM runs faster than other tools, such as cutPrimers and BAMClipper.


Algorithms ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 151
Author(s):  
Bruno Carpentieri

The increase in memory and in network traffic used and caused by new sequenced biological data has recently deeply grown. Genomic projects such as HapMap and 1000 Genomes have contributed to the very large rise of databases and network traffic related to genomic data and to the development of new efficient technologies. The large-scale sequencing of samples of DNA has brought new attention and produced new research, and thus the interest in the scientific community for genomic data has greatly increased. In a very short time, researchers have developed hardware tools, analysis software, algorithms, private databases, and infrastructures to support the research in genomics. In this paper, we analyze different approaches for compressing digital files generated by Next-Generation Sequencing tools containing nucleotide sequences, and we discuss and evaluate the compression performance of generic compression algorithms by confronting them with a specific system designed by Jones et al. specifically for genomic file compression: Quip. Moreover, we present a simple but effective technique for the compression of DNA sequences in which we only consider the relevant DNA data and experimentally evaluate its performances.


Author(s):  
Anne Krogh Nøhr ◽  
Kristian Hanghøj ◽  
Genis Garcia Erill ◽  
Zilong Li ◽  
Ida Moltke ◽  
...  

Abstract Estimation of relatedness between pairs of individuals is important in many genetic research areas. When estimating relatedness, it is important to account for admixture if this is present. However, the methods that can account for admixture are all based on genotype data as input, which is a problem for low-depth next-generation sequencing (NGS) data from which genotypes are called with high uncertainty. Here we present a software tool, NGSremix, for maximum likelihood estimation of relatedness between pairs of admixed individuals from low-depth NGS data, which takes the uncertainty of the genotypes into account via genotype likelihoods. Using both simulated and real NGS data for admixed individuals with an average depth of 4x or below we show that our method works well and clearly outperforms all the commonly used state-of-the-art relatedness estimation methods PLINK, KING, relateAdmix, and ngsRelate that all perform quite poorly. Hence, NGSremix is a useful new tool for estimating relatedness in admixed populations from low-depth NGS data. NGSremix is implemented in C/C ++ in a multi-threaded software and is freely available on Github https://github.com/KHanghoj/NGSremix.


2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Panagiotis Moulos

Abstract Background The relentless continuing emergence of new genomic sequencing protocols and the resulting generation of ever larger datasets continue to challenge the meaningful summarization and visualization of the underlying signal generated to answer important qualitative and quantitative biological questions. As a result, the need for novel software able to reliably produce quick, comprehensive, and easily repeatable genomic signal visualizations in a user-friendly manner is rapidly re-emerging. Results recoup is a Bioconductor package for quick, flexible, versatile, and accurate visualization of genomic coverage profiles generated from Next Generation Sequencing data. Coupled with a database of precalculated genomic regions for multiple organisms, recoup offers processing mechanisms for quick, efficient, and multi-level data interrogation with minimal effort, while at the same time creating publication-quality visualizations. Special focus is given on plot reusability, reproducibility, and real-time exploration and formatting options, operations rarely supported in similar visualization tools in a profound way. recoup was assessed using several qualitative user metrics and found to balance the tradeoff between important package features, including speed, visualization quality, overall friendliness, and the reusability of the results with minimal additional calculations. Conclusion While some existing solutions for the comprehensive visualization of NGS data signal offer satisfying results, they are often compromised regarding issues such as effortless tracking of processing and preparation steps under a common computational environment, visualization quality and user friendliness. recoup is a unique package presenting a balanced tradeoff for a combination of assessment criteria while remaining fast and friendly.


Sign in / Sign up

Export Citation Format

Share Document