scholarly journals Mutual Information-based Circular Template Matching for Image Registration

2014 ◽  
Vol 30 (5) ◽  
pp. 547-557 ◽  
Author(s):  
Chul-Soo Ye
Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2407
Author(s):  
Hojun You ◽  
Dongsu Kim

Fluvial remote sensing has been used to monitor diverse riverine properties through processes such as river bathymetry and visual detection of suspended sediment, algal blooms, and bed materials more efficiently than laborious and expensive in-situ measurements. Red–green–blue (RGB) optical sensors have been widely used in traditional fluvial remote sensing. However, owing to their three confined bands, they rely on visual inspection for qualitative assessments and are limited to performing quantitative and accurate monitoring. Recent advances in hyperspectral imaging in the fluvial domain have enabled hyperspectral images to be geared with more than 150 spectral bands. Thus, various riverine properties can be quantitatively characterized using sensors in low-altitude unmanned aerial vehicles (UAVs) with a high spatial resolution. Many efforts are ongoing to take full advantage of hyperspectral band information in fluvial research. Although geo-referenced hyperspectral images can be acquired for satellites and manned airplanes, few attempts have been made using UAVs. This is mainly because the synthesis of line-scanned images on top of image registration using UAVs is more difficult owing to the highly sensitive and heavy image driven by dense spatial resolution. Therefore, in this study, we propose a practical technique for achieving high spatial accuracy in UAV-based fluvial hyperspectral imaging through efficient image registration using an optical flow algorithm. Template matching algorithms are the most common image registration technique in RGB-based remote sensing; however, they require many calculations and can be error-prone depending on the user, as decisions regarding various parameters are required. Furthermore, the spatial accuracy of this technique needs to be verified, as it has not been widely applied to hyperspectral imagery. The proposed technique resulted in an average reduction of spatial errors by 91.9%, compared to the case where the image registration technique was not applied, and by 78.7% compared to template matching.


2014 ◽  
Vol 52 (7) ◽  
pp. 4328-4338 ◽  
Author(s):  
Maoguo Gong ◽  
Shengmeng Zhao ◽  
Licheng Jiao ◽  
Dayong Tian ◽  
Shuang Wang

2012 ◽  
Vol 241-244 ◽  
pp. 2630-2637
Author(s):  
Chun Rong Wei ◽  
Chu He ◽  
Hong Sun

In order to reduce the noise sensitivity of the SAR (synthetic aperture radar) image registration, a image registration algorithm which basing on the ratio mutual information (RatioMI) is proposed in this paper. Firstly, the ratio images of the reference image and the floating image are gotten by using the ratio operator, and then take the two ratio images as a similar characteristic quantity to construct the similarity measure function which was used in the optimization process of the image registration experiment. The experimental results of the SAR image registration show that the new registration algorithm which based on the RatioMI is effectively in avoiding the local maxima point problems causing by speckle noise.


Sadhana ◽  
2014 ◽  
Vol 39 (2) ◽  
pp. 317-331 ◽  
Author(s):  
VILAS H GAIDHANE ◽  
YOGESH V HOTE ◽  
VIJANDER SINGH

2014 ◽  
Vol 18 (2) ◽  
pp. 343-358 ◽  
Author(s):  
Hassan Rivaz ◽  
Zahra Karimaghaloo ◽  
D. Louis Collins

2020 ◽  
Author(s):  
Nailong Jia ◽  
Long Fan ◽  
Chuanzi Li ◽  
Zhongshi Nie ◽  
Suihuang Wang ◽  
...  

BACKGROUND Background: At present, the incidence of diabetes is on the rise. When doctors diagnose and treat patients' diseases, they often need to image patients to provide complementary information on patient anatomy and functional metabolism. OBJECTIVE Objective: The aim was to understand the morphological features of peripheral blood vessels of diabetes more accurately and explore its Risk factors for the occurrence of lesions for early diagnosis and early prevention. METHODS Methods: The paper selected subclinical diabetes patients admitted to our hospital from October 2013 to October 2018 as a research object. After performing colour Doppler ultrasonography on peripheral blood vessels, images of ultrasound images were taken. Then the paper proposes a multi-mode medical image registration method based on hybrid optimization algorithm for the multi-extreme problem of mutual information function. Mutual information is used as the similarity measure. The hybrid optimization algorithm is used to search for the best registration exchange parameters. The quasi-colour super images are exchanged for registration purposes. RESULTS Results: The experimental results show that the hybrid optimization algorithm can accurately analyse the colour ultrasound image of the peripheral blood vessels of subclinical diabetes, avoiding falling into the local optimal value, and the accuracy of the registration result reaches the sub-pixel level. CONCLUSIONS Conclusion: With the rapid development of imaging technology, the increasing image resolution, and the increasing amount of image data, parallel performance is high. The quasi-method has a very important significance for multi-modal medical image registration. The parameters in this algorithm can be further optimized. CLINICALTRIAL


Sign in / Sign up

Export Citation Format

Share Document