Study of Towing Characteristics of Damaged Ship

Author(s):  
Min-Guk Seo ◽  
Sungchul Hwang ◽  
Yong Ju Kwon ◽  
Dong-Min Park ◽  
Hyunseung Nam ◽  
...  
Keyword(s):  
2016 ◽  
Vol 120 ◽  
pp. 346-352 ◽  
Author(s):  
Teemu Manderbacka ◽  
Pekka Ruponen
Keyword(s):  

2017 ◽  
Vol 130 ◽  
pp. 385-397 ◽  
Author(s):  
Monika Kollo ◽  
Janek Laanearu ◽  
Kristjan Tabri

Author(s):  
Maro Ćorak ◽  
Joško Parunov

The aim of the paper is the assessment of structural reliability of oil tanker which may be damaged in collision accident in the Adriatic Sea and exposed to combined, horizontal and vertical bending moments. Damage size is assumed based on the direct numerical simulation of the ship-ship collision. This is justified for some specific sea environments, as the Adriatic Sea, where ship sailing routes and representative ship types involved in accidents are known, so possible collision scenarios may be reasonably predicted. Residual bending moment capacity under combined bending moment is calculated using regression equations developed based on non-linear finite element analysis. Still water vertical bending moments are obtained by damage stability analysis. Vertical and horizontal wave bending moments are determined by short-term response analysis of damaged ship in the Adriatic Sea, using transfer functions obtained by 3D panel hydrodynamic method. Limit state function is defined using interaction equation for damaged ship exposed to combined bending moments. Safety indices are calculated by FORM for different collision scenarios that are generated by MC simulations. Such approach enables to determine the safety indices for the most frequent damages and also to reveal the most critical situations resulting in the lowest safety indices.


2015 ◽  
Author(s):  
Jeonghwa Seo ◽  
Cristobal Santiago Bravo ◽  
Shin Hyung Rhee

A series of tests using a course-keeping model ship with an autopilot system were carried out in a towing tank for research on Safe-Return-to-Port (SRTP). The autopilot system controls the rudder angle and propeller revolution rate by a feedback system. The variation of the heading angle of the test model with different control parameters was investigated first, to ensure that the test model had sufficient course-keeping maneuverability in severe wave conditions. The wave conditions and propeller revolution rate were selected based on SRTP regulations. Tests were conducted in wave conditions corresponding to sea states 4 to 6. The six-degrees-of-freedom motion response of the test model was measured by a wireless inertial measurement unit and gyro sensors to achieve fully wireless model tests. The advance speed and motion response in various wave conditions were measured and analyzed to investigate the effects of flooding behavior in a damaged condition and of waves on the propulsion and maneuvering performance of the damaged ship model.


Author(s):  
Lu-Ning Cui ◽  
Yi Zheng ◽  
Yinggang Li ◽  
Ling Zhu ◽  
Mingsheng Chen

Abstract Ships sailing in the sea may encounter collision, grounding or projectile impacting accidents, which may cause hull damage and subsequent compartment flooding. Due to the effect of the flooding water induced moment and the restoring moment, the damaged ship may have inclination and rolling motion. When the inclination or the rolling motion is too large, it may affect the safety and survivability of ship in navigation and cause severe casualties and property losses. In order to increase the navigation safety and survivability of the damaged ship, a numerical model is established based on the potential flow theory to investigate the seakeeping performance of the damaged ship in two scenarios, i.e., the case before ship damaged, and the case when the damaged ship reaching a relatively stable floating state. The heave, pitch and roll motion responses and corresponding wave-induced loads acting on the ship are analyzed in regular waves. In addition, the effects of the navigation speed and the wave direction on the seakeeping performance are also investigated.


2019 ◽  
Vol 33 (2) ◽  
pp. 245-251
Author(s):  
Li-fen Hu ◽  
Ke-zheng Zhang ◽  
Xiao-ying Li ◽  
Run-xin Chang

Sign in / Sign up

Export Citation Format

Share Document