scholarly journals Capsizing Probability of Dead Ship Stability in Beam Wind and Wave for Damaged Ship

2019 ◽  
Vol 33 (2) ◽  
pp. 245-251
Author(s):  
Li-fen Hu ◽  
Ke-zheng Zhang ◽  
Xiao-ying Li ◽  
Run-xin Chang
2019 ◽  
Vol 161 (A3) ◽  

The International Maritime Organization is currently establishing second generation intact stability criteria, the dead ship stability is considered one important criterion, so the development of its direct stability assessment regulation has become a topic undergoing close review. In this paper a peak-over-threshold (POT) method is proposed to evaluate the dead ship stability, which focuses on the statistical extrapolation that exceed the threshold, also the traditional Monte Carlo simulation is carried out to approve the method. On the basis of verification calculation of the sample ship CEHIPAR2792, the capsizing probability of a certain warship is also conducted. Moreover, the influence of initial stability height GM and effective wave slope coefficient on the capsizing probability is analysed. The results and the possible reason for the difference are examined. This study is expected to provide technical support for the second-generation stability criteria and establish the capsizing probability of damaged dead ship stability.


2021 ◽  
Vol 55 (1) ◽  
pp. 115-126
Author(s):  
Lifen Hu ◽  
Chen Yao ◽  
Wubin Li ◽  
Xiangyang Wang ◽  
Zhongyu Sun

AbstractThis study proposes a method for combining capsizing probability and flooding process to investigate the time-domain dead ship stability of a damaged ship. It focuses on a nonlinear righting lever GZ curve solution in the following aspects: one aspect subjects the influence of damaged tanks on a hull shape to the wind and wave, and the other aspect is based on a real-time calculation of the GZ curve. According to 1‐degree-of-freedom rolling equation, the damaged capsizing probability model is established through fourth-order Runge-Kutta algorithm and Monte Carlo simulation. Also, the model solution is applied on the basis of Visual Basic 6.0 language, and the results are compared with the NAPA platform. The most significant development in this study is combining time-domain flooding process and capsizing probability calculation. To verify the proposed methods, two damaged fishery bureau vessels are used as the sample ships. Results of time-domain capsizing probability under different loading conditions are compared, and the difference and its possible reasons are analyzed.


2019 ◽  
Vol 161 (A3) ◽  
Author(s):  
LF Hu ◽  
QZ Zhang ◽  
WY Zhang ◽  
HB Qi

The International Maritime Organization is currently establishing second generation intact stability criteria, the dead ship stability is considered one important criterion, so the development of its direct stability assessment regulation has become a topic undergoing close review. In this paper a peak-over-threshold (POT) method is proposed to evaluate the dead ship stability, which focuses on the statistical extrapolation that exceed the threshold, also the traditional Monte Carlo simulation is carried out to approve the method. On the basis of verification calculation of the sample ship CEHIPAR2792, the capsizing probability of a certain warship is also conducted. Moreover, the influence of initial stability height GM and effective wave slope coefficient on the capsizing probability is analysed. The results and the possible reason for the difference are examined. This study is expected to provide technical support for the second-generation stability criteria and establish the capsizing probability of damaged dead ship stability.


Author(s):  
L F Hu ◽  
Q Z Zhang ◽  
W Y Zhang ◽  
H B Qi

The International Maritime Organization is currently establishing second generation intact stability criteria, the dead ship stability is considered one important criterion, so the development of its direct stability assessment regulation has become a topic undergoing close review. In this paper a peak-over-threshold (POT) method is proposed to evaluate the dead ship stability, which focuses on the statistical extrapolation that exceed the threshold, also the traditional Monte Carlo simulation is carried out to approve the method. On the basis of verification calculation of the sample ship CEHIPAR2792, the capsizing probability of a certain warship is also conducted. Moreover, the influence of initial stability height GM and effective wave slope coefficient Y on the capsizing probability is analysed. The results and the possible reason for the difference are examined. This study is expected to provide technical support for the second-generation stability criteria and establish the capsizing probability of damaged dead ship stability.


2016 ◽  
Vol 120 ◽  
pp. 346-352 ◽  
Author(s):  
Teemu Manderbacka ◽  
Pekka Ruponen
Keyword(s):  

2017 ◽  
Vol 130 ◽  
pp. 385-397 ◽  
Author(s):  
Monika Kollo ◽  
Janek Laanearu ◽  
Kristjan Tabri

Author(s):  
Min-Guk Seo ◽  
Sungchul Hwang ◽  
Yong Ju Kwon ◽  
Dong-Min Park ◽  
Hyunseung Nam ◽  
...  
Keyword(s):  

1999 ◽  
Vol 36 (03) ◽  
pp. 171-174
Author(s):  
Hüseyin Yilmaz ◽  
Abdi Kükner

It is well known that stability is the most important safety requirement for ships. One should have some information on ship stability at the preliminary design stage in order to reduce risk. Initial stability of ships is an important criterion and can be closely evaluated in terms of form parameters and vertical center of gravity. In this study, using some sample ship data, approximate formulations are derived by means of regression analysis for the calculations expressed in terms of ship preliminary design parameters that can easily provide approximate GM calculations. Thus designers can be provided with ship stability at the preliminary design stage, and also a set of appropriate design parameters for improving vessel stability can easily be determined.


Sign in / Sign up

Export Citation Format

Share Document