scholarly journals Motor Evoked Potential (MEP) for the Intra-operative Monitoring of Motor Function( Functional Neurophysiological Monitoring for Neurosurgery)

2008 ◽  
Vol 17 (1) ◽  
pp. 13-20
Author(s):  
Takamitsu Yamamoto ◽  
Katunori Shijo ◽  
Toshikazu Kano ◽  
Takafumi Nagaoka ◽  
Kazutaka Kobayashi ◽  
...  
2009 ◽  
Vol 27 (4) ◽  
pp. E7 ◽  
Author(s):  
Anthony C. Wang ◽  
Khoi D. Than ◽  
Arnold B. Etame ◽  
Frank La Marca ◽  
Paul Park

Object Transcranial motor evoked potential (TcMEP) monitoring is frequently used in complex spinal surgeries to prevent neurological injury. Anesthesia, however, can significantly affect the reliability of TcMEP monitoring. Understanding the impact of various anesthetic agents on neurophysiological monitoring is therefore essential. Methods A literature search of the National Library of Medicine database was conducted to identify articles pertaining to anesthesia and TcMEP monitoring during spine surgery. Twenty studies were selected and reviewed. Results Inhalational anesthetics and neuromuscular blockade have been shown to limit the ability of TcMEP monitoring to detect significant changes. Hypothermia can also negatively affect monitoring. Opioids, however, have little influence on TcMEPs. Total intravenous anesthesia regimens can minimize the need for inhalational anesthetics. Conclusions In general, selecting the appropriate anesthetic regimen with maintenance of a stable concentration of inhalational or intravenous anesthetics optimizes TcMEP monitoring.


2012 ◽  
Vol 16 (2) ◽  
pp. 107-113 ◽  
Author(s):  
Vincent C. Traynelis ◽  
Kingsley O. Abode-Iyamah ◽  
Katie M. Leick ◽  
Sarah M. Bender ◽  
Jeremy D. W. Greenlee

Object The primary goal of this study was to review the immediate postoperative neurological function in patients surgically treated for symptomatic cervical spine disease without intraoperative neurophysiological monitoring. The secondary goal was to assess the economic impact of intraoperative monitoring (IOM) in this patient population. Methods This study is a retrospective review of 720 consecutively treated patients who underwent cervical spine procedures. The patients were identified and the data were collected by individuals who were not involved in their care. Results A total of 1534 cervical spine levels were treated in 720 patients using anterior, posterior, and combined (360°) approaches. Myelopathy was present preoperatively in 308 patients. There were 185 patients with increased signal intensity within the spinal cord on preoperative T2-weighted MR images, of whom 43 patients had no clinical evidence of myelopathy. Three patients (0.4%) exhibited a new neurological deficit postoperatively. Of these patients, 1 had a preoperative diagnosis of radiculopathy, while the other 2 were treated for myelopathy. The new postoperative deficits completely resolved in all 3 patients and did not require additional treatment. The Current Procedural Terminology (CPT) codes for IOM during cervical decompression include 95925 and 95926 for somatosensory evoked potential monitoring of the upper and lower extremities, respectively, as well as 95928 and 95929 for motor evoked potential monitoring of the upper and lower extremities. In addition to the charge for the baseline [monitoring] study, patients are charged hourly for ongoing electrophysiology testing and monitoring using the CPT code 95920. Based on these codes and assuming an average of 4 hours of monitoring time per surgical case, the savings realized in this group of patients was estimated to be $1,024,754. Conclusions With the continuing increase in health care costs, it is our responsibility as providers to minimize expenses when possible. This should be accomplished without compromising the quality of care to patients. This study demonstrates that decompression and reconstruction for symptomatic cervical spine disease without IOM may reduce the cost of treatment without adversely impacting patient safety.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Bingbing Xiang ◽  
Shulan Jiao ◽  
Yulong Zhang ◽  
Lu Wang ◽  
Yuting Yao ◽  
...  

Abstract Background Better protection can be provided during neurosurgery due to the establishment of somatosensory-evoked potential (SEP) and motor-evoked potential (MEP) monitoring technologies. However, some studies have showed that inhaled halogenated anesthetics have a significant impact on neurophysiological monitoring. Methods A total of 40 consecutive patients undergoing neurosurgery were randomly assigned to two groups receiving inhaled anesthetics, either desflurane or sevoflurane. Multiples levels (concentrations of 0.3, 0.6 and 0.9) of anesthetics were administered at minimum alveolar concentration (MAC), and then the latencies and amplitudes of SEPs and MEPs were recorded. Results SEP and MEP signals were well preserved in patients who underwent neurosurgery under general anesthesia supplemented with desflurane or sevoflurane at concentrations of 0.3, 0.6 and 0.9 MAC. In each desflurane or sevoflurane group, the amplitudes of SEPs and MEPs decreased and the latencies of SEPs were prolonged significantly as the MAC increased (P < 0.05). The SEP latencies of both the upper and lower limbs in the desflurane group were significantly longer, and the SEP amplitudes were significantly lower than those in the sevoflurane group (P < 0.05). The MEP amplitudes in the desflurane group were significantly lower than those in the sevoflurane group (P < 0.05), only the amplitudes of the upper limbs at 0.3 MAC did not vary significantly. Conclusions SEPs and MEPs were inhibited in a dose-dependent manner by both desflurane and sevoflurane. At the same MAC concentration, desflurane appeared to have a stronger inhibitory effect than sevoflurane. All patients studied had normal neurological examination findings, hence, these results may not be applicable to patients with preexisting deficits. Trial registration The study registered on the Chinese Clinical Trial Registry (www.chictr.org.cn), Clinical Trials identifier ChiCTR2100045504 (18/04/2021).


2019 ◽  
Vol 121 (3) ◽  
pp. 853-866 ◽  
Author(s):  
Aiko K. Thompson ◽  
Gina Fiorenza ◽  
Lindsay Smyth ◽  
Briana Favale ◽  
Jodi Brangaccio ◽  
...  

Foot drop is very common among people with chronic incomplete spinal cord injury (SCI) and likely stems from SCI that disturbs the corticospinal activation of the ankle dorsiflexor tibialis anterior (TA). Thus, if one can recover or increase the corticospinal excitability reduced by SCI, motor function recovery may be facilitated. Here, we hypothesized that in people suffering from weak dorsiflexion due to chronic incomplete SCI, increasing the TA motor-evoked potential (MEP) through operant up-conditioning can improve dorsiflexion during locomotion, while in people without any injuries, it would have little impact on already normal locomotion. Before and after 24 MEP conditioning or control sessions, locomotor electromyography (EMG) and kinematics were measured. This study reports the results of these locomotor assessments. In participants without SCI, locomotor EMG activity, soleus Hoffmann reflex modulation, and joint kinematics did not change, indicating that MEP up-conditioning or repeated single-pulse transcranial magnetic stimulation (i.e., control protocol) does not influence normal locomotion. In participants with SCI, MEP up-conditioning increased TA activity during the swing-to-swing stance transition phases and ankle joint motion during locomotion in the conditioned leg and increased walking speed consistently. In addition, the swing-phase TA activity and ankle joint motion also improved in the contralateral leg. The results are consistent with our hypothesis. Together with the previous operant conditioning studies in humans and rats, the present study suggests that operant conditioning can be a useful therapeutic tool for enhancing motor function recovery in people with SCI and other central nervous system disorders. NEW & NOTEWORTHY This study examined the functional impact of operant conditioning of motor-evoked potential (MEP) to transcranial magnetic stimulation that aimed to increase corticospinal excitability for the ankle dorsiflexor tibialis anterior (TA). In people with chronic incomplete spinal cord injury (SCI), MEP up-conditioning increased TA activity and improved dorsiflexion during locomotion, while in people without injuries, it had little impact on already normal locomotion. MEP conditioning may potentially be used to enhance motor function recovery after SCI.


Author(s):  
Muneharu Ando ◽  
Tetsuya Tamaki ◽  
Hiroshi Yamada ◽  
Hiroaki Nishiura ◽  
Seiji Kubota ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document