scholarly journals Deep Learning Approaches for Intrusion Detection

Author(s):  
Azar Abid Salih ◽  
Siddeeq Y. Ameen ◽  
Subhi R. M. Zeebaree ◽  
Mohammed A. M. Sadeeq ◽  
Shakir Fattah Kak ◽  
...  

Recently, computer networks faced a big challenge, which is that various malicious attacks are growing daily. Intrusion detection is one of the leading research problems in network and computer security. This paper investigates and presents Deep Learning (DL) techniques for improving the Intrusion Detection System (IDS). Moreover, it provides a detailed comparison with evaluating performance, deep learning algorithms for detecting attacks, feature learning, and datasets used to identify the advantages of employing in enhancing network intrusion detection.

2021 ◽  
Author(s):  
Kathiroli Raja ◽  
Krithika Karthikeyan ◽  
Abilash B ◽  
Kapal Dev ◽  
Gunasekaran Raja

Abstract The Industrial Internet of Things (IIoT), also known as Industry 4.0, has brought a revolution in the production and manufacturing sectors as it assists in the automation of production management and reduces the manual effort needed in auditing and managing the pieces of machinery. IoT-enabled industries, in general, use sensors, smart meters, and actuators. Most of the time, the data held by these devices is surpassingly sensitive and private. This information might be modified,
1
stolen, or even the devices may be subjected to a Denial of Service (DoS) attack. As a consequence, the product quality may deteriorate or sensitive information may be leaked. An Intrusion Detection System (IDS), implemented in the network layer of IIoT, can detect attacks, thereby protecting the data and devices. Despite substantial advancements in attack detection in IIoT, existing works fail to detect certain attacks obfuscated from detectors resulting in a low detection performance. To address the aforementioned issue, we propose a Deep Learning-based Two Level Network Intrusion Detection System (DLTL-NIDS) for IIoT environment, emphasizing challenging attacks. The attacks that attain low accuracy or low precision in level-1 detection are marked as challenging attacks. Experimental results show that the proposed model, when tested against TON IoT, figures out the challenging attacks well and achieves an accuracy of 99.97%, precision of 95.62%, recall of 99.5%, and F1-score of 99.65%. The proposed DL-TLNIDS, when compared with state-of-art models, achieves a decrease in false alarm rate to 2.34% (flagging normal traffic as an attack) in IIoT.


2021 ◽  
pp. 210-216
Author(s):  
Mustafa Altaha ◽  
◽  
Jae-Myeong Lee ◽  
Muhammad Aslam ◽  
Sugwon Hong

The intrusion detection system (IDS) is the main tool to do security monitoring that is one of the security strategies for the supervisory control and data acquisition (SCADA) system. In this paper, we develop an IDS based on the autoencoder deep learning model (AE-IDS) for the SCADA system. The target SCADA communication protocol of the detection model is the Distributed Network Protocol 3 (DNP3), which is currently the most commonly utilized communication protocol in the power substation. Cyberattacks that we consider are data injection or modification attacks, which are the most critical attacks in the SCADA systems. In this paper, we extracted 17 data features from DNP3 communication, and use them to train the autoencoder network. We measure accuracy and loss of detection and compare them with different supervised deep learning algorithms. The unsupervised AE-IDS model shows better performance than the other deep learning IDS models.


Sign in / Sign up

Export Citation Format

Share Document