Study of Microwave Afterglows in N2 Gas Mixtures by Emission Spectroscopy and LIF. Application to Surface Cleaning

2021 ◽  
pp. 32-55
Author(s):  
André Ricard ◽  
Gérard Baravian ◽  
Jayr Amorim ◽  
Freddy Gaboriau ◽  
Mireille Gaillard
Author(s):  
Christian G Parigger ◽  
Christopher M Helstern ◽  
Ghaneshwar Gautam

This work communicates the connection of measured shadowgraphs from optically induced air breakdown with emission spectroscopy in selected gas mixtures. Laser-induced optical breakdown is generated using 850 mJ and 170 mJ, 6-ns pulses at a wavelength of 1064 nm, the shadowgraphs are recorded using time-delayed 5-ns pulses at a wavelength of 532 nm and a digital camera, and emission spectra are recorded for typically a dozen of discrete time-delays from optical breakdown by employing an intensified charge-coupled device. The symmetry of the breakdown event can be viewed as close-to spherical symmetry for time-delays of several 100 ns. Spectroscopic analysis explores well-above hypersonic expansion dynamics using primarily the diatomic molecule cyanide and atomic hydrogen emission spectroscopy. Analysis of the air breakdown and selected gas breakdown events permits the use of Abel inversion for inference of the expanding species distribution. Typically, species are prevalent at higher density near the hypersonically expanding shockwave, measured by tracing cyanide and a specific carbon atomic line. Overall, recorded air breakdown shadowgraphs are indicative of laser-plasma expansion in selected gas mixtures, and optical spectroscopy delivers analytical insight into plasma expansion phenomena.


Symmetry ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2116
Author(s):  
Christian G. Parigger ◽  
Christopher M. Helstern ◽  
Ghaneshwar Gautam

This work communicates the connection of measured shadowgraphs from optically induced air breakdown with emission spectroscopy in selected gas mixtures. Laser-induced optical breakdown is generated using 850 and 170 mJ, 6 ns pulses at a wavelength of 1064 nm, the shadowgraphs are recorded using time-delayed 5 ns pulses at a wavelength of 532 nm and a digital camera, and emission spectra are recorded for typically a dozen of discrete time-delays from optical breakdown by employing an intensified charge-coupled device. The symmetry of the breakdown event can be viewed as close-to spherical symmetry for time-delays of several 100 ns. Spectroscopic analysis explores well-above hypersonic expansion dynamics using primarily the diatomic molecule cyanide and atomic hydrogen emission spectroscopy. Analysis of the air breakdown and selected gas breakdown events permits the use of Abel inversion for inference of the expanding species distribution. Typically, species are prevalent at higher density near the hypersonically expanding shockwave, measured by tracing cyanide and a specific carbon atomic line. Overall, recorded air breakdown shadowgraphs are indicative of laser-plasma expansion in selected gas mixtures, and optical spectroscopy delivers analytical insight into plasma expansion phenomena.


2011 ◽  
Vol 110 (7) ◽  
pp. 073307 ◽  
Author(s):  
S. Namba ◽  
T. Yamasaki ◽  
Y. Hane ◽  
D. Fukuhara ◽  
K. Kozue ◽  
...  

2014 ◽  
Vol 68 (2) ◽  
pp. 222-225 ◽  
Author(s):  
Cheng-Hsiang Lin ◽  
Zhi Liang ◽  
Jun Zhou ◽  
Hai-Lung Tsai

Author(s):  
R. F. Egerton

An important parameter governing the sensitivity and accuracy of elemental analysis by electron energy-loss spectroscopy (EELS) or by X-ray emission spectroscopy is the signal/noise ratio of the characteristic signal.


Author(s):  
C.M. Sung ◽  
M. Levinson ◽  
M. Tabasky ◽  
K. Ostreicher ◽  
B.M. Ditchek

Directionally solidified Si/TaSi2 eutectic composites for the development of electronic devices (e.g. photodiodes and field-emission cathodes) were made using a Czochralski growth technique. High quality epitaxial growth of silicon on the eutectic composite substrates requires a clean silicon substrate surface prior to the growth process. Hence a preepitaxial surface cleaning step is highly desirable. The purpose of this paper is to investigate the effect of surface cleaning methods on the epilayer/substrate interface and the characterization of silicon epilayers grown on Si/TaSi2 substrates by TEM.Wafers were cut normal to the <111> growth axis of the silicon matrix from an approximately 1 cm diameter Si/TaSi2 composite boule. Four pre-treatments were employed to remove native oxide and other contaminants: 1) No treatment, 2) HF only; 3) HC1 only; and 4) both HF and HCl. The cross-sectional specimens for TEM study were prepared by cutting the bulk sample into sheets perpendicular to the TaSi2 fiber axes. The material was then prepared in the usual manner to produce samples having a thickness of 10μm. The final step was ion milling in Ar+ until breakthrough occurred. The TEM samples were then analyzed at 120 keV using the Philips EM400T.


Sign in / Sign up

Export Citation Format

Share Document