scholarly journals Simultaneous Placement and Sizing of Distributed Generation Units and Shunt Capacitors on Radial Distribution Systems Using Cuckoo Search Algorithm

Author(s):  
Sunday Adeleke Salimon ◽  
Gafari Abiola Adepoju ◽  
Isaiah Gbadegesin Adebayo ◽  
Oluwadamilare Bode Adewuyi ◽  
Saheed Oluwasina Amuda

This paper presents a Cuckoo Search (CS) algorithm-based methodology for simultaneous optimal placement and sizing of Shunt Capacitors (SCs) and Distributed Generations (DGs) together in radial distribution systems. The objectives of the work are to minimize the real power and reactive power losses while maximizing the voltage stability index of the distribution network subjected to equality and inequality constraints. Different operational test cases are considered namely installation of SCs only, DGs only, SCs before DGs, DGs before SCs, and SCs and DGs at one time. The proposed method has been demonstrated on standard IEEE 33-bus and a practical Ayepe 34-bus radial distribution test systems. The highest percentage power loss reduction of 94.4% and other substantial benefits are obtained when SCs and DGs are optimally installed simultaneously. Simulated results obtained from the proposed technique are compared with other well-known optimization algorithms and found to be more effective.

Author(s):  
O.E. Olabode

Compensating reactive power deficiency on power grids is a central concern in the distribution of energy management systems. Several approaches have been adopted over time to minimize the total real power loss and enhancing bus voltage profile. Shunt capacitor has been used from time immemorial for addressing issue of reactive power compensation at the distribution end of power systems, and the extent of benefits derivable from its usage depend solely on correct siting and sizing. To this effect, meta-heuristic algorithms are promising optimization tools for achieving these objectives. This paper, therefore, presents a comprehensive review of cuckoo search algorithm based on optimal siting and sizing of shunt capacitors in radial distribution systems. The suitability, in addition to strengths and weakness of each approaches reported in the reviewed articles have been painstakingly x-rayed. Based on the review, it was observed that a two-stage approach is always adopted in the compensation process: the pre-selection of potential or sensitive nodes and the optimal sizing of shunt capacitors needed for the compensation. For the pre-location, Voltage Stability Index and Loss Sensitivity Factor were found to be comparatively less complex and highly suitable techniques. Another cogent discovery from this review is that less attention has been drawn to the use of cuckoo search algorithm by Nigerian researchers. Therefore, regarding Nigerian electric grid system, the use of cuckoo search algorithm in reactive power support presents a research gap for further investigations.


Author(s):  
Gafari Abiola Adepoju ◽  
Sunday Adeleke Salimon ◽  
Hassan Adedapo Aderinko ◽  
Akeem Olawale Bisiriyu

The optimal placement and sizing of Distributed Generation (DG) using has been shown by researchers to be effective in the reduction of power losses and improvement of voltage profile on a radial distribution network. However, it has not been applied to solve the inherent problems of real Nigerian distribution network. Therefore, this paper aimed at optimal placement and sizing of DG using Cuckoo Search Algorithm (CSA) in a real Nigerian distribution network taking Ayepe 34-bus as a case study. The objective function was formulated considering the real power loss, the minimum Voltage Stability Index (VSI) and the reactive power loss using weight method. The formulated objective function was incorporated into the CSA. Power flow analyses were performed with line and load data of Ayepe 34-bus distribution network without the incorporation of DG for the base case, with incorporation of single DG and two DG units. The total active power loss, minimum VSI and total reactive power loss for the base case were 0.762 MW, 0.4741, 0.146 MVar respectively. The optimal size and bus location after single DG installation were found to be (3.5 MW, 11) respectively while the optimal size and location for the two-DG units’ installation were found to be (2.4 MW, 13; 1.4 MW, 21), respectively. With single DG unit, the total active power loss, minimum VSI and total reactive power loss were 0.141 MW, 0.9064 and 0.027 MVar respectively. For two-DG units, the total active power loss, minimum VSI and total reactive power loss 0.131 MW, 0.9287 and 0.025 MVar respectively. The results established the effectiveness of the optimal placement and sizing of DG for the Nigerian distribution system in terms of reduction of power losses, improvement of voltage stability index and profile using CSA technique.


Author(s):  
Sayed Mir Shah Danish ◽  
Mikaeel Ahmadi ◽  
Atsushi Yona ◽  
Tomonobu Senjyu ◽  
Narayanan Krishna ◽  
...  

AbstractThe optimal size and location of the compensator in the distribution system play a significant role in minimizing the energy loss and the cost of reactive power compensation. This article introduces an efficient heuristic-based approach to assign static shunt capacitors along radial distribution networks using multi-objective optimization method. A new objective function different from literature is adapted to enhance the overall system voltage stability index, minimize power loss, and to achieve maximum net yearly savings. However, the capacitor sizes are assumed as discrete known variables, which are to be placed on the buses such that it reduces the losses of the distribution system to a minimum. Load sensitive factor (LSF) has been used to predict the most effective buses as the best place for installing compensator devices. IEEE 34-bus and 118-bus test distribution systems are utilized to validate and demonstrate the applicability of the proposed method. The simulation results obtained are compared with previous methods reported in the literature and found to be encouraging.


2013 ◽  
Vol 397-400 ◽  
pp. 1113-1116
Author(s):  
Xiao Meng Wu ◽  
Wang Hao Fei ◽  
Xiao Mei Xiang ◽  
Wen Juan Wang

In order to solve the problem in reactive power compensation of oilfield distribution systems at present, a Taboo search algorithm is proposed in this paper, by which the optimal location and size of shunt capacitors on distribution systems are determined. Then the voltage profile is improved and the active power loss is reduced. In this paper, Voltage qualified is used as objective function to search an initial solution that meets the voltage constraints so that it is feasible in practicable voltage range; then the global optimum solution can be got when taking the reduced maximum of active power loss as objective unction. The examples show that the improved algorithm is feasible and effective.


Author(s):  
Mahesh Kumar ◽  
Perumal Nallagownden ◽  
Irraivan Elamvazuthi ◽  
Pandian Vasant ◽  
Luqman Hakim Rahman

In the distribution system, distributed generation (DG) are getting more important because of the electricity demands, fossil fuel depletion and environment concerns. The placement and sizing of DGs have greatly impact on the voltage stability and losses in the distribution network. In this chapter, a particle swarm optimization (PSO) algorithm has been proposed for optimal placement and sizing of DG to improve voltage stability index in the radial distribution system. The two i.e. active power and combination of active and reactive power types of DGs are proposed to realize the effect of DG integration. A specific analysis has been applied on IEEE 33 bus system radial distribution networks using MATLAB 2015a software.


Author(s):  
Sunday Adeleke Salimon ◽  
Abiodun Aderemi Baruwa ◽  
Saheed Oluwasina Amuda ◽  
Hafiz Adesupo Adeleke

Optimal allocation of shunt capacitors in the radial distribution networks results in both technical and economic benefits. This paper presents a two-stage method of Loss Sensitivity Factor (LSF) and Cuckoo Search Algorithm (CSA) to find the optimal size and location of shunt capacitors with the objective of minimizing cost due to power loss and reactive power compensation of the distribution networks. The first stage utilizes the LSF to predict the potential candidate buses for shunt capacitor placement thereby reducing the search space of the second stage and avoiding unnecessary repetitive load flow while the second stage uses the CSA to find the size and actual placement of the shunt capacitors satisfying the operating constraints. The applicability of the proposed two stage method is tested on the standard IEEE 33-bus and Ayepe 34-bus Nigerian radial distribution networks of the Ibadan Electricity Distribution Company. After running the algorithm, the simulation results gave percentage real and reactive power loss reduction of 34.28% and 28.94% as compared to the base case for the IEEE 33-bus system while the percentage real and reactive power loss reduction of 22.89% and 21.40% was recorded for the Ayepe 34-bus system. Comparison of the obtained results with other techniques in literatures for the standardized IEEE 33-bus reveals the efficiency of the proposed method as it achieved technical benefits of reduced total power loss, improved voltage profile and bus voltage stability, and the economic benefit of reduced total cost due to electrical power loss and compensation.


Sign in / Sign up

Export Citation Format

Share Document