scholarly journals A New Generalization of Jacobsthal Lucas Numbers (Bi-Periodic Jacobsthal Lucas Sequence)

Author(s):  
Sukran Uygun ◽  
Evans Owusu

In this study, we bring into light a new generalization of the Jacobsthal Lucas numbers, which shall also be called the bi-periodic Jacobsthal Lucas sequence as   with initial conditions $$\ \hat{c}_{0}=2,\ \hat{c}_{1}=a.$$ The Binet formula as well as the generating function for this sequence are given. The convergence property of the consecutive terms of this sequence is examined after which the well known Cassini, Catalan and the D'ocagne identities as well as some related summation formulas are also given.

Author(s):  
Sukran Uygun ◽  
Evans Owusu

In this paper, we bring into light the matrix representation of bi-periodic Jacobsthal sequence, which we shall call the bi-periodic Jacobsthal matrix sequence. We dene it as with initial conditions J0 = I identity matrix, . We obtained the nth general term of this new matrix sequence. By studying the properties of this new matrix sequence, the well-known Cassini or Simpson's formula was obtained. We then proceed to find its generating function as well as the Binet formula. Some new properties and two summation formulas for this new generalized matrix sequence were also given.


2016 ◽  
Vol 67 (1) ◽  
pp. 41-46
Author(s):  
Pavel Trojovský

Abstract Let k ≥ 1 and denote (Fk,n)n≥0, the k-Fibonacci sequence whose terms satisfy the recurrence relation Fk,n = kFk,n−1 +Fk,n−2, with initial conditions Fk,0 = 0 and Fk,1 = 1. In the same way, the k-Lucas sequence (Lk,n)n≥0 is defined by satisfying the same recurrence relation with initial values Lk,0 = 2 and Lk,1 = k. These sequences were introduced by Falcon and Plaza, who showed many of their properties, too. In particular, they proved that Fk,n+1 + Fk,n−1 = Lk,n, for all k ≥ 1 and n ≥ 0. In this paper, we shall prove that if k ≥ 1 and $F_{k,n + 1}^s + F_{k,n - 1}^s \in \left( {L_{k,m} } \right)_{m \ge 1} $ for infinitely many positive integers n, then s =1.


Author(s):  
Musraini M Musraini M ◽  
Rustam Efendi ◽  
Rolan Pane ◽  
Endang Lily

Barisan Fibonacci dan Lucas telah digeneralisasi dalam banyak cara, beberapa dengan mempertahankan kondisi awal, dan lainnya dengan mempertahankan relasi rekurensi. Makalah ini menyajikan sebuah generalisasi baru barisan Fibonacci-Lucas yang didefinisikan oleh relasi rekurensi B_n=B_(n-1)+B_(n-2),n≥2 , B_0=2b,B_1=s dengan b dan s bilangan bulat  tak negatif. Selanjutnya, beberapa identitas dihasilkan dan diturunkan menggunakan formula Binet dan metode sederhana lainnya. Juga dibahas beberapa identitas dalam bentuk determinan.   The Fibonacci and Lucas sequence has been generalized in many ways, some by preserving the initial conditions, and others by preserving the recurrence relation. In this paper, a new generalization of Fibonacci-Lucas sequence is introduced and defined by the recurrence relation B_n=B_(n-1)+B_(n-2),n≥2, with ,  B_0=2b,B_1=s                          where b and s are non negative integers. Further, some identities are generated and derived by Binet’s formula and other simple methods. Also some determinant identities are discussed.


2020 ◽  
pp. 66-82
Author(s):  
Y¨uksel Soykan

In this paper, closed forms of the summation formulas for generalized Fibonacci and Gaussian generalized Fibonacci numbers are presented. Then, some previous results are recovered as particular cases of the present results. As special cases, we give summation formulas of Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal, Jacobsthal-Lucas numbers and Gaussian Fibonacci, Gaussian Lucas, Gaussian Pell, Gaussian Pell-Lucas, Gaussian Jacobsthal, Gaussian Jacobsthal-Lucas numbers.


2020 ◽  
Vol 1 (3) ◽  
pp. 112-122
Author(s):  
Agung Prabowo

Fibonacci numbers, Lucas numbers and Mulatu numbers are built in the same method. The three numbers differ in the first term, while the second term is entirely the same. The next terms are the sum of two successive terms. In this article, generalizations of Fibonacci, Lucas and Mulatu (GFLM) numbers are built which are generalizations of the three types of numbers. The Binet formula is then built for the GFLM numbers, and determines the golden ratio, silver ratio and Bronze ratio of the GFLM numbers. This article also presents generalizations of these three types of ratios, called Metallic ratios. In the last part we state the Metallic ratio in the form of continued fraction and nested radicals.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Dursun Tasci ◽  
Mirac Cetin Firengiz ◽  
Naim Tuglu

We define the incomplete bivariate Fibonacci and Lucas polynomials. In the case , , we obtain the incomplete Fibonacci and Lucas numbers. If , , we have the incomplete Pell and Pell-Lucas numbers. On choosing , , we get the incomplete generalized Jacobsthal number and besides for the incomplete generalized Jacobsthal-Lucas numbers. In the case , , , we have the incomplete Fibonacci and Lucas numbers. If , , , , we obtain the Fibonacci and Lucas numbers. Also generating function and properties of the incomplete bivariate Fibonacci and Lucas polynomials are given.


Mathematics ◽  
2020 ◽  
Vol 8 (7) ◽  
pp. 1047
Author(s):  
Pavel Trojovský ◽  
Štěpán Hubálovský

Let k ≥ 1 be an integer and denote ( F k , n ) n as the k-Fibonacci sequence whose terms satisfy the recurrence relation F k , n = k F k , n − 1 + F k , n − 2 , with initial conditions F k , 0 = 0 and F k , 1 = 1 . In the same way, the k-Lucas sequence ( L k , n ) n is defined by satisfying the same recursive relation with initial values L k , 0 = 2 and L k , 1 = k . The sequences ( F k , n ) n ≥ 0 and ( L k , n ) n ≥ 0 were introduced by Falcon and Plaza, who derived many of their properties. In particular, they proved that F k , n 2 + F k , n + 1 2 = F k , 2 n + 1 and F k , n + 1 2 − F k , n − 1 2 = k F k , 2 n , for all k ≥ 1 and n ≥ 0 . In this paper, we shall prove that if k > 1 and F k , n s + F k , n + 1 s ∈ ( F k , m ) m ≥ 1 for infinitely many positive integers n, then s = 2 . Similarly, that if F k , n + 1 s − F k , n − 1 s ∈ ( k F k , m ) m ≥ 1 holds for infinitely many positive integers n, then s = 1 or s = 2 . This generalizes a Marques and Togbé result related to the case k = 1 . Furthermore, we shall solve the Diophantine equations F k , n = L k , m , F k , n = F n , k and L k , n = L n , k .


Author(s):  
Y¨ uksel Soykan

In this paper, closed forms of the sum formulas for the cubes of generalized Fibonacci numbers are presented. As special cases, we give summation formulas of Fibonacci, Lucas, Pell, Pell-Lucas, Jacobsthal and Jacobsthal-Lucas numbers.


Author(s):  
Y¨ uksel Soykan

In this paper, closed forms of the summation formulas for generalized Fibonacci numbers arepresented. As special cases, we give summation formulas of Fibonacci, Lucas, Pell, Pell-Lucas,Jacobsthal, Jacobsthal-Lucas numbers.


Author(s):  
Yüksel Soykan

In this paper, we introduce the generalized dual hyperbolic Fibonacci numbers. As special cases, we deal with dual hyperbolic Fibonacci and dual hyperbolic Lucas numbers. We present Binet's formulas, generating functions and the summation formulas for these numbers. Moreover, we give Catalan's, Cassini's, d'Ocagne's, Gelin-Cesàro's, Melham's identities and present matrices related with these sequences.


Sign in / Sign up

Export Citation Format

Share Document