scholarly journals On the Ideal Based Zero Divisor Graphs of Unital Commutative Rings and Galois Ring Module Idealizations

Author(s):  
Owino Maurice Oduor

Let R be a commutative ring with identity 1 and I is an ideal of R. The zero divisor graph of the ring with respect to ideal has vertices defined as follows: {u ∈ Ic | uv ∈ I for some v ∈ Ic}, where Ic is the complement of I and two distinct vertices are adjacent if and only if their product lies in the ideal. In this note, we investigate the conditions under which the zero divisor graph of the ring with respect to the ideal coincides with the zero divisor graph of the ring modulo the ideal. We also consider a case of Galois ring module idealization and investigate its ideal based zero divisor graph.

2011 ◽  
Vol 10 (04) ◽  
pp. 665-674
Author(s):  
LI CHEN ◽  
TONGSUO WU

Let p be a prime number. Let G = Γ(R) be a ring graph, i.e. the zero-divisor graph of a commutative ring R. For an induced subgraph H of G, let CG(H) = {z ∈ V(G) ∣N(z) = V(H)}. Assume that in the graph G there exists an induced subgraph H which is isomorphic to the complete graph Kp-1, a vertex c ∈ CG(H), and a vertex z such that d(c, z) = 3. In this paper, we characterize the finite commutative rings R whose graphs G = Γ(R) have this property (called condition (Kp)).


2019 ◽  
Vol 19 (12) ◽  
pp. 2050226 ◽  
Author(s):  
G. Kalaimurugan ◽  
P. Vignesh ◽  
T. Tamizh Chelvam

Let [Formula: see text] be a finite commutative ring without identity. In this paper, we characterize all finite commutative rings without identity, whose zero-divisor graphs are unicyclic, claw-free and tree. Also, we obtain all finite commutative rings without identity and of cube-free order for which the corresponding zero-divisor graph is toroidal.


2012 ◽  
Vol 55 (1) ◽  
pp. 127-137 ◽  
Author(s):  
John D. LaGrange

AbstractThe zero-divisor graph Γ(R) of a commutative ring R is the graph whose vertices consist of the nonzero zero-divisors of R such that distinct vertices x and y are adjacent if and only if xy = 0. In this paper, a characterization is provided for zero-divisor graphs of Boolean rings. Also, commutative rings R such that Γ(R) is isomorphic to the zero-divisor graph of a direct product of integral domains are classified, as well as those whose zero-divisor graphs are central vertex complete.


2020 ◽  
Vol 12 (1) ◽  
pp. 84-101 ◽  
Author(s):  
S. Pirzada ◽  
M. Aijaz

AbstractLet R be a commutative ring with Z*(R) as the set of non-zero zero divisors. The zero divisor graph of R, denoted by Γ(R), is the graph whose vertex set is Z*(R), where two distinct vertices x and y are adjacent if and only if xy = 0. In this paper, we investigate the metric dimension dim(Γ(R)) and upper dimension dim+(Γ(R)) of zero divisor graphs of commutative rings. For zero divisor graphs Γ(R) associated to finite commutative rings R with unity 1 ≠ 0, we conjecture that dim+(Γ(R)) = dim(Γ(R)), with one exception that {\rm{R}} \cong \Pi {\rm\mathbb{Z}}_2^{\rm{n}}, n ≥ 4. We prove that this conjecture is true for several classes of rings. We also provide combinatorial formulae for computing the metric and upper dimension of zero divisor graphs of certain classes of commutative rings besides giving bounds for the upper dimension of zero divisor graphs of rings.


2021 ◽  
Vol 28 (03) ◽  
pp. 533-540
Author(s):  
Qiong Liu ◽  
Tongsuo Wu ◽  
Jin Guo

Let [Formula: see text] be a commutative ring and [Formula: see text] be its zero-divisor graph. We completely determine the structure of all finite commutative rings whose zero-divisor graphs have clique number one, two, or three. Furthermore, if [Formula: see text] (each [Formula: see text] is local for [Formula: see text]), we also give algebraic characterizations of the ring [Formula: see text] when the clique number of [Formula: see text] is four.


2021 ◽  
Vol 28 (04) ◽  
pp. 655-672
Author(s):  
K. Selvakumar ◽  
M. Subajini

Let [Formula: see text] be a commutative ring, [Formula: see text] an ideal of [Formula: see text] and [Formula: see text] a fixed integer. The ideal-based [Formula: see text]-zero-divisor hypergraph [Formula: see text] of [Formula: see text] has vertex set [Formula: see text], the set of all ideal-based [Formula: see text]-zero-divisors of [Formula: see text], and for distinct elements [Formula: see text] in [Formula: see text], the set [Formula: see text] is an edge in [Formula: see text] if and only if [Formula: see text] and the product of the elements of any [Formula: see text]-subset of [Formula: see text] is not in [Formula: see text]. In this paper, we show that [Formula: see text] is connected with diameter at most 4 provided that [Formula: see text] for all ideal-based 3-zero-divisor hypergraphs. Moreover, we find the chromatic number of [Formula: see text] when [Formula: see text] is a product of finite fields. Finally, we find some necessary conditions for a finite ring [Formula: see text] and a nonzero ideal [Formula: see text] of [Formula: see text] to have [Formula: see text] planar.


Author(s):  
Zahra Barati

Let [Formula: see text] be a commutative ring and [Formula: see text] be the zero divisor graph of [Formula: see text]. In this paper, we investigate when the zero divisor graph is a line graph. We completely present all commutative rings which their zero divisor graphs are line graphs. Also, we study when the zero divisor graph is the complement of a line graph.


2020 ◽  
Vol 2020 ◽  
pp. 1-6
Author(s):  
Abdullah Ali H. Ahmadini ◽  
Ali N. A. Koam ◽  
Ali Ahmad ◽  
Martin Bača ◽  
Andrea Semaničová–Feňovčíková

The applications of finite commutative ring are useful substances in robotics and programmed geometric, communication theory, and cryptography. In this paper, we study the vertex-based eccentric topological indices of a zero-divisor graphs of commutative ring ℤp2×ℤq, where p and q are primes.


Filomat ◽  
2012 ◽  
Vol 26 (3) ◽  
pp. 623-629 ◽  
Author(s):  
David Anderson ◽  
Shaban Ghalandarzadeh ◽  
Sara Shirinkam ◽  
Parastoo Rad

For a commutative ring R with identity, the ideal-based zero-divisor graph, denoted by ?I (R), is the graph whose vertices are {x ? R\I|xy ? I for some y ? R\I}, and two distinct vertices x and y are adjacent if and only if xy?I. In this paper, we investigate an annihilator ideal-based zero-divisor graph, denoted by ?Ann(M)(R), by replacing the ideal I with the annihilator ideal Ann(M) for an R-module M. We also study the relationship between the diameter of ?Ann(M) (R) and the minimal prime ideals of Ann(M). In addition, we determine when ?Ann(M)(R) is complete. In particular, we prove that for a reduced R-module M, ?Ann(M) (R) is a complete graph if and only if R ? Z2?Z2 and M ? M1?M2 for M1 and M2 nonzero Z2-modules.


2012 ◽  
Vol 19 (spec01) ◽  
pp. 1017-1040 ◽  
Author(s):  
David F. Anderson ◽  
Ayman Badawi

Let R be a commutative ring with nonzero identity. In this paper, we study the von Neumann regular elements of R. We also study the idempotent elements, π-regular elements, the von Neumann local elements, and the clean elements of R. Finally, we investigate the subgraphs of the zero-divisor graph Γ(R) of R induced by the above elements.


Sign in / Sign up

Export Citation Format

Share Document