Ideal-Based k-Zero-Divisor Hypergraph of Commutative Rings

2021 ◽  
Vol 28 (04) ◽  
pp. 655-672
Author(s):  
K. Selvakumar ◽  
M. Subajini

Let [Formula: see text] be a commutative ring, [Formula: see text] an ideal of [Formula: see text] and [Formula: see text] a fixed integer. The ideal-based [Formula: see text]-zero-divisor hypergraph [Formula: see text] of [Formula: see text] has vertex set [Formula: see text], the set of all ideal-based [Formula: see text]-zero-divisors of [Formula: see text], and for distinct elements [Formula: see text] in [Formula: see text], the set [Formula: see text] is an edge in [Formula: see text] if and only if [Formula: see text] and the product of the elements of any [Formula: see text]-subset of [Formula: see text] is not in [Formula: see text]. In this paper, we show that [Formula: see text] is connected with diameter at most 4 provided that [Formula: see text] for all ideal-based 3-zero-divisor hypergraphs. Moreover, we find the chromatic number of [Formula: see text] when [Formula: see text] is a product of finite fields. Finally, we find some necessary conditions for a finite ring [Formula: see text] and a nonzero ideal [Formula: see text] of [Formula: see text] to have [Formula: see text] planar.

2020 ◽  
Vol 12 (1) ◽  
pp. 84-101 ◽  
Author(s):  
S. Pirzada ◽  
M. Aijaz

AbstractLet R be a commutative ring with Z*(R) as the set of non-zero zero divisors. The zero divisor graph of R, denoted by Γ(R), is the graph whose vertex set is Z*(R), where two distinct vertices x and y are adjacent if and only if xy = 0. In this paper, we investigate the metric dimension dim(Γ(R)) and upper dimension dim+(Γ(R)) of zero divisor graphs of commutative rings. For zero divisor graphs Γ(R) associated to finite commutative rings R with unity 1 ≠ 0, we conjecture that dim+(Γ(R)) = dim(Γ(R)), with one exception that {\rm{R}} \cong \Pi {\rm\mathbb{Z}}_2^{\rm{n}}, n ≥ 4. We prove that this conjecture is true for several classes of rings. We also provide combinatorial formulae for computing the metric and upper dimension of zero divisor graphs of certain classes of commutative rings besides giving bounds for the upper dimension of zero divisor graphs of rings.


2019 ◽  
Vol 13 (07) ◽  
pp. 2050121
Author(s):  
M. Aijaz ◽  
S. Pirzada

Let [Formula: see text] be a commutative ring with unity [Formula: see text]. The annihilating-ideal graph of [Formula: see text], denoted by [Formula: see text], is defined to be the graph with vertex set [Formula: see text] — the set of non-zero annihilating ideals of [Formula: see text] and two distinct vertices [Formula: see text] and [Formula: see text] adjacent if and only if [Formula: see text]. Some connections between annihilating-ideal graphs and zero divisor graphs are given. We characterize the prime ideals (or equivalently maximal ideals) of [Formula: see text] in terms of their degrees as vertices of [Formula: see text]. We also obtain the metric dimension of annihilating-ideal graphs of commutative rings.


Author(s):  
Rasul Mohammadi ◽  
Ahmad Moussavi ◽  
Masoome Zahiri

Let [Formula: see text] be an associative ring with identity. A right [Formula: see text]-module [Formula: see text] is said to have Property ([Formula: see text]), if each finitely generated ideal [Formula: see text] has a nonzero annihilator in [Formula: see text]. Evans [Zero divisors in Noetherian-like rings, Trans. Amer. Math. Soc. 155(2) (1971) 505–512.] proved that, over a commutative ring, zero-divisor modules have Property ([Formula: see text]). We study and construct various classes of modules with Property ([Formula: see text]). Following Anderson and Chun [McCoy modules and related modules over commutative rings, Comm. Algebra 45(6) (2017) 2593–2601.], we introduce [Formula: see text]-dual McCoy modules and show that, for every strictly totally ordered monoid [Formula: see text], faithful symmetric modules are [Formula: see text]-dual McCoy. We then use this notion to give a characterization for modules with Property ([Formula: see text]). For a faithful symmetric right [Formula: see text]-module [Formula: see text] and a strictly totally ordered monoid [Formula: see text], it is proved that the right [Formula: see text]-module [Formula: see text] is primal if and only if [Formula: see text] is primal with Property ([Formula: see text]).


2018 ◽  
Vol 17 (07) ◽  
pp. 1850121
Author(s):  
K. Selvakumar ◽  
M. Subajini ◽  
M. J. Nikmehr

Let [Formula: see text] be a commutative ring with identity and let [Formula: see text] be the set of zero-divisors of [Formula: see text]. The essential graph of [Formula: see text] is defined as the graph [Formula: see text] with the vertex set [Formula: see text] and two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text] is an essential ideal. In this paper, we classify all finite commutative rings with identity for which the genus of [Formula: see text] is two.


2012 ◽  
Vol 55 (1) ◽  
pp. 127-137 ◽  
Author(s):  
John D. LaGrange

AbstractThe zero-divisor graph Γ(R) of a commutative ring R is the graph whose vertices consist of the nonzero zero-divisors of R such that distinct vertices x and y are adjacent if and only if xy = 0. In this paper, a characterization is provided for zero-divisor graphs of Boolean rings. Also, commutative rings R such that Γ(R) is isomorphic to the zero-divisor graph of a direct product of integral domains are classified, as well as those whose zero-divisor graphs are central vertex complete.


2007 ◽  
Vol 2007 ◽  
pp. 1-15 ◽  
Author(s):  
Ch. Eslahchi ◽  
A. M. Rahimi

The concept of the zero-divisor graph of a commutative ring has been studied by many authors, and thek-zero-divisor hypergraph of a commutative ring is a nice abstraction of this concept. Though some of the proofs in this paper are long and detailed, any reader familiar with zero-divisors will be able to read through the exposition and find many of the results quite interesting. LetRbe a commutative ring andkan integer strictly larger than2. Ak-uniform hypergraphHk(R)with the vertex setZ(R,k), the set of allk-zero-divisors inR, is associated toR, where eachk-subset ofZ(R,k)that satisfies thek-zero-divisor condition is an edge inHk(R). It is shown that ifRhas two prime idealsP1andP2with zero their only common point, thenHk(R)is a bipartite (2-colorable) hypergraph with partition setsP1−Z′andP2−Z′, whereZ′is the set of all zero divisors ofRwhich are notk-zero-divisors inR. IfRhas a nonzero nilpotent element, then a lower bound for the clique number ofH3(R)is found. Also, we have shown thatH3(R)is connected with diameter at most 4 wheneverx2≠0for all3-zero-divisorsxofR. Finally, it is shown that for any finite nonlocal ringR, the hypergraphH3(R)is complete if and only ifRis isomorphic toZ2×Z2×Z2.


Author(s):  
Owino Maurice Oduor

Let R be a commutative ring with identity 1 and I is an ideal of R. The zero divisor graph of the ring with respect to ideal has vertices defined as follows: {u ∈ Ic | uv ∈ I for some v ∈ Ic}, where Ic is the complement of I and two distinct vertices are adjacent if and only if their product lies in the ideal. In this note, we investigate the conditions under which the zero divisor graph of the ring with respect to the ideal coincides with the zero divisor graph of the ring modulo the ideal. We also consider a case of Galois ring module idealization and investigate its ideal based zero divisor graph.


Author(s):  
S. Karthik ◽  
S. N. Meera ◽  
K. Selvakumar

Let [Formula: see text] be a commutative ring with identity and [Formula: see text] be the set of all nonzero zero-divisors of [Formula: see text]. The annihilator graph of commutative ring [Formula: see text] is the simple undirected graph [Formula: see text] with vertices [Formula: see text] and two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text]. The essential graph of [Formula: see text] is defined as the graph [Formula: see text] with the vertex set [Formula: see text] and two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if [Formula: see text] is an essential ideal. In this paper, we classify all finite commutative rings with identity whose annihilator graph and essential graph have crosscap two.


Mathematics ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 482
Author(s):  
Bilal A. Rather ◽  
Shariefuddin Pirzada ◽  
Tariq A. Naikoo ◽  
Yilun Shang

Given a commutative ring R with identity 1≠0, let the set Z(R) denote the set of zero-divisors and let Z*(R)=Z(R)∖{0} be the set of non-zero zero-divisors of R. The zero-divisor graph of R, denoted by Γ(R), is a simple graph whose vertex set is Z*(R) and each pair of vertices in Z*(R) are adjacent when their product is 0. In this article, we find the structure and Laplacian spectrum of the zero-divisor graphs Γ(Zn) for n=pN1qN2, where p<q are primes and N1,N2 are positive integers.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Ali Ahmad ◽  
S. C. López

Let R be a commutative ring with nonzero identity and let Z R be its set of zero divisors. The zero-divisor graph of R is the graph Γ R with vertex set V Γ R = Z R ∗ , where Z R ∗ = Z R \ 0 , and edge set E Γ R = x , y :   x ⋅ y = 0 . One of the basic results for these graphs is that Γ R is connected with diameter less than or equal to 3. In this paper, we obtain a few distance-based topological polynomials and indices of zero-divisor graph when the commutative ring is ℤ p 2 q 2 , namely, the Wiener index, the Hosoya polynomial, and the Shultz and the modified Shultz indices and polynomials.


Sign in / Sign up

Export Citation Format

Share Document