scholarly journals Open Loop System Identification from Impulse Response of Closed Loop System and Its Application to Large Space Structure

1997 ◽  
Vol 33 (4) ◽  
pp. 311-313
Author(s):  
Isao YAMAGUCHI ◽  
Takeshi KIDA ◽  
Takeshi SEKIGUCHI
Author(s):  
Z Ren ◽  
G G Zhu

This paper studies the closed-loop system identification (ID) error when a dynamic integral controller is used. Pseudo-random binary sequence (PRBS) q-Markov covariance equivalent realization (Cover) is used to identify the closed-loop model, and the open-loop model is obtained based upon the identified closed-loop model. Accurate open-loop models were obtained using PRBS q-Markov Cover system ID directly. For closed-loop system ID, accurate open-loop identified models were obtained with a proportional controller, but when a dynamic controller was used, low-frequency system ID error was found. This study suggests that extra caution is required when a dynamic integral controller is used for closed-loop system identification. The closed-loop identification framework also has significant effects on closed-loop identification error. Both first- and second-order examples are provided in this paper.


Volume 3 ◽  
2004 ◽  
Author(s):  
Robert A. Leishear ◽  
Jeffrey H. Morehouse

The effects of fluid transients, or water hammer, in closed loop systems are somewhat different than those observed in open ended systems. The open loop system has received much attention in the literature, not so for the closed system. The generally accepted method of characteristics (MOC) technique was applied herein to investigate closed loop systems. The magnitudes of the pressures during fluid transients were investigated for examples of rapid valve closures, and the operations of parallel pumps. The effects of trapped air in the system were also considered for these examples. To reduce the pressures caused by the transients, the installation of slow closing valves were evaluated for different conditions.


Author(s):  
Orkun Simsek ◽  
Ayse Ilden Bayrak ◽  
Sinem Karatoprak ◽  
Atilla Dogan

2012 ◽  
Vol 442 ◽  
pp. 315-320
Author(s):  
Yun Fang Feng

A design method of fractional controller has been developed to meet the five different specifications, including for the closed-loop system robustness. The specifications of cross frequency, phase to get financing ϕ meters and robustness and complete performance curve based on level off the stage of open loop system, ensure damping is worse reaction time of model uncertainty gain change.


Author(s):  
Hassene Jammoussi ◽  
Matthew Franchek ◽  
Karolos Grigoriadis ◽  
Martin Books

A closed-loop system identification method is developed to estimate the parameters of a single input single output (SISO) linear time invariant system (LTI) operating within a feedback loop. The method uses the reference command in addition to the input–output data and establishes a correlation framework to structure the system. The correlation-based method is capable of delivering consistent estimates provided that the specific conditions on the signals are met. The method parallels the instrumental variables four step algorithm (IV4) and is comprised of three steps. First a model is estimated using cross correlation calculations between the reference input signal and the control and measured output signals. In the second step, a prefilter is identified to reduce estimation bias. In the final step, the prefilter, the instrumental variables and the measured signals are employed to estimate the final model. A consistency proof is provided for the proposed estimation process. The method is demonstrated on two examples. The first uses data collected from a diesel engine operation, and an open-loop model relating fueling to engine speed is sought. The identification process is complicated by the presence of nonmeasurable external torque disturbances and stochastic sensor noise. The second example uses data obtained from a time domain simulation of a closed-loop system where high levels of nonmeasured noise and disturbances were considered and a comparison with existing methods is made.


Author(s):  
N. Loix ◽  
A. Preumont

Abstract This paper aims to attract the attention of the designers of active structures on the importance of evaluating properly the feedthrough component of the open-loop transfer functions. It is shown that overlooking the feedthrough component can change significantly the location of the zeros of the open-loop system and, as a result, alter drastically the performance of the closed-loop system. The feedthrough term may result from the quasi-static contribution of the high frequency modes or from local effects that are neglected by over-simplified modelling techniques (e.g. plate or beam instead of shell). The problem is illustrated with a cantilever beam provided with strain actuators.


1986 ◽  
Vol 120 (1) ◽  
pp. 369-385 ◽  
Author(s):  
G. WEILAND ◽  
U. BÄSSLER ◽  
M. BRUNNER

An experimental arrangement was constructed which is based on the open-loop femur-tibia control system of two stick insect species (Carausius morosus and Cuniculina impigra). It could be artificially closed in the following way: the position of the tibia was measured by an optical device and this value was used to drive a penmotor which moved the receptor apodeme of the femoral chordotonal organ in the same way as in intact animals. This arrangement allows direct comparison of the behaviour of the open-loop and the closed-loop system as well as introducing an additional delay. The Carausius system has a phase reserve of only 30°-50° and the factor of feedback control approaches 1 between 1 and 2 Hz. This agrees with the observation that an additional delay of 70–200 ms produces long-lasting oscillations of 1–2 Hz. The Cuniculina system has a larger phase reserve and consequently a delay of 200 ms produced no oscillations. All experiments show that extrapolation from the open-loop system to the closed-loop system is valid, despite the non-linear characteristics of the loop. Consequences for servo-mechanisms during walking and rocking movements are discussed.


Author(s):  
Shuichi Fukuda

This paper points out that in order to provide emotional satisfaction to the customer, hardware products should be modularized not only with functions or shapes, but with more meanings such as adaptability, etc. Thus, a network-structured modularization is called for more than a tree-structured one to cope with diverse customer expectations. The emerging field of material digitalization, which can be compared to physical FEM, is expected to provide a versatile and flexible tool for this purpose and it will change our design from the current open loop system to the closed loop system so that it will provide us with the capability of managing deterioration and that of adaptability to the frequently and widely changing situations.


Author(s):  
H. Jammoussi ◽  
M. A. Franchek ◽  
K. Grigoriadis ◽  
M. Books

A closed loop system identification method is developed in which estimation bias from sensor noise and external disturbances is minimized. The method, based on the instrumental variables four step algorithm (IV4), uses three steps. The first step estimates a model using cross covariance calculations between the reference input signal and the control and measured output signals. The second step employs the prefilter identification process from the IV4 process. The third and final step uses the prefilter, the instrumental variables and the reference, control and output signals to estimate the final model. The method is demonstrated on a diesel engine where an open loop model relating fueling to engine speed is sought. The identification example is complicated by the presence of nonmeasurable external torque disturbances due to vehicle accessories.


1997 ◽  
Vol 119 (3) ◽  
pp. 390-395 ◽  
Author(s):  
R. L. Clark

Colocated, output feedback is commonly used in the control of reverberant systems. More often than not, the system to be controlled displays high modal density at a moderate frequency, and thus the compliance of the out-of-bandwidth modes significantly influences the performance of the closed-loop system at low frequencies. In the assumed modes approach, the inclusion principle is used to demonstrate that the poles of the dynamic system converge from above when additional admissible functions are used to expand the solution. However, one can also interpret the convergence of the poles in terms of the zeros of the open-loop system. Since colocated inputs and outputs are known to have interlaced poles and zeros, the effect of a modification to the structural impedance locally serves to couple the modes of the system through feedback. The poles of the modified system follow loci defined by the relative location of the open-loop poles and zeros. Thus, as the number of admissible functions used in the series expansion is increased, the interlaced zeros of the colocated plant tend toward the open-loop poles, causing the closed-loop poles to converge from above as predicted by the inclusion principle. The analysis and results presented in this work indicate that the cumulative compliance of the out-of-bandwidth modes and not the modes themselves is required to converge the zeros of the open-loop system and the poles of the closed-loop system.


Sign in / Sign up

Export Citation Format

Share Document