scholarly journals WAVE ENERGY DISTRIBUTION IN AN ESTUARY

1980 ◽  
Vol 1 (17) ◽  
pp. 139
Author(s):  
Volker Barthel

A field investigation program on waves in the Weser Estuary, German Bight of the North Sea, was started to learn about the complex wave climate in this region. The comparison of results in the various locations shows that most of the' wave energy is transferred from deep water across the reef region to the wadden area. The comparison of spectra in the different sites and the parametrization of these multipeak- spectra gives another feasibility to describe estuarine waves.

1982 ◽  
Vol 1 (18) ◽  
pp. 9
Author(s):  
V. Barthel

A field investigation program on waves was carried out in the Weser estuary, German Bight of the North Sea. Wave height and period distributions in this complicated wave climate can be approximated by a Rayleigh distribution. Empirical distributions of the wave heights characterise the different regions of the estuary. The presence of wave grouping as well as the group bounded long waves are shown in a few examples. The necessity of further investigations and analysis is highlighted.


1997 ◽  
Vol 34 (6) ◽  
pp. 375-381 ◽  
Author(s):  
G. Radach ◽  
K. Heyer

Author(s):  
D. Duranti ◽  
M. Huuse ◽  
J.A. Cartwright ◽  
A. Hurst ◽  
B. Cronin ◽  
...  

1991 ◽  
Vol 24 (10) ◽  
pp. 77-85 ◽  
Author(s):  
J. Klamer ◽  
R. W. P. M. Laane ◽  
J. M. Marquenie

From literature data it is calculated that on an annual basis, 11 to 17 tonnes of PCBs enter the North Sea. Largest sources are the Atlantic Ocean and the atmosphere: together they account for 60-79% of the total input. Sources with greatest impact are the rivers, sewers and sludge. Highest concentrations are found close to the Dutch shore and in the German Bight. The PCB levels result in adverse effects on the seal population in the Wadden Sea. Of the total world PCB production, at least 57% is still in use and their future dispersal into the oceans cannot easily be controlled. If the increase in ocean PCB concentration continues, it may ultimately result in the extinction of fish-eating marine mammals.


2007 ◽  
Vol 42 (3) ◽  
pp. 271-288 ◽  
Author(s):  
Mona Hoppenrath ◽  
Bank Beszteri ◽  
Gerhard Drebes ◽  
Hannelore Halliger ◽  
Justus E. E. Van Beusekom ◽  
...  

Ocean Science ◽  
2020 ◽  
Vol 16 (1) ◽  
pp. 31-44 ◽  
Author(s):  
Caroline Rasquin ◽  
Rita Seiffert ◽  
Benno Wachler ◽  
Norbert Winkel

Abstract. Due to climate change an accelerated mean sea level rise is expected. One key question for the development of adaptation measures is how mean sea level rise affects tidal dynamics in shelf seas such as the North Sea. Owing to its low-lying coastal areas, the German Bight (located in the southeast of the North Sea) will be especially affected. Numerical hydrodynamic models help to understand how mean sea level rise changes tidal dynamics. Models cannot adequately represent all processes in overall detail. One limiting factor is the resolution of the model grid. In this study we investigate which role the representation of the coastal bathymetry plays when analysing the response of tidal dynamics to mean sea level rise. Using a shelf model including the whole North Sea and a high-resolution hydrodynamic model of the German Bight we investigate the changes in M2 amplitude due to a mean sea level rise of 0.8 and 10 m. The shelf model and the German Bight Model react in different ways. In the simulations with a mean sea level rise of 0.8 m the M2 amplitude in the shelf model generally increases in the region of the German Bight. In contrast, the M2 amplitude in the German Bight Model increases only in some coastal areas and decreases in the northern part of the German Bight. In the simulations with a mean sea level rise of 10 m the M2 amplitude increases in both models with largely similar spatial patterns. In two case studies we adjust the German Bight Model in order to more closely resemble the shelf model. We find that a different resolution of the bathymetry results in different energy dissipation changes in response to mean sea level rise. Our results show that the resolution of the bathymetry especially in flat intertidal areas plays a crucial role for modelling the impact of mean sea level rise.


2007 ◽  
Vol 29 (3) ◽  
pp. 146-154 ◽  
Author(s):  
Alexander V. Boukhanovsky ◽  
Leonid J. Lopatoukhin ◽  
C. Guedes Soares

Sign in / Sign up

Export Citation Format

Share Document