scholarly journals THE WAVE RUN-UP SIMULATOR, THEORY AND FIRST PILOT TEST

2012 ◽  
Vol 1 (33) ◽  
pp. 65 ◽  
Author(s):  
Jentsje Van der Meer ◽  
Yvo Provoost ◽  
Gosse Jan Steendam

The idea of the Wave Run-up Simulator is based on the experiences with the Wave Overtopping Simulator. It is possible to simulate wave tongues overtopping a dike crest in reality. It must also be possible to simulate waves in the run-up and run-down zone of the seaward slope. This is the zone after waves have broken and when they rush-up the slope. The present paper describes this new idea of the Wave Run-up Simulator, why it is useful to develop the machine, to perform research with it and to develop a prediction method for slope strength. In fact, a prediction method can already be developed from the Cumulative Overload Method, which was developed on the basis of results with the Wave Overtopping Simulator, see Van der Meer et al. (2010). It also means that tests on the seaward slope will be done for validation purposes only. The paper describes in detail what is known about the movement of waves in this run-up zone and what actually the Wave Run-up Simulator has to simulate. Not a lot of research has been performed to describe the wave run-up process in detail, physically nor statistically. Finally, the pilot test has been described including hydraulic measurements on the slope.

2012 ◽  
Vol 1 (33) ◽  
pp. 64
Author(s):  
Gosse Jan Steendam ◽  
Yvo Provoost ◽  
Jentsje Van der Meer

In March 2011 new wave overtopping tests have been performed in the Netherlands. In contrast to previous tests the grass cover of this dike was not maintained well, which had significant effect on erosion stability. Additionally, for the first time a pilot test has been made on wave run-up from an asphalt berm onto the grass covered upper slope of the dike. The tested dike sections had a sand core covered by a layer of clay and a grass cover. The objective was to test the erosion stability of seaward and landward slopes for wave overtopping as well as wave run-up. For the wave overtopping also the influence on erodibility of the grass cover caused by obstacles or other elements, which may be present at dikes (stairs, fences), was investigated.


Author(s):  
H. Verhaeghe ◽  
J. W. van der Meer ◽  
G.-J. Steendam ◽  
P. Besley ◽  
L. Franco ◽  
...  

2012 ◽  
Vol 1 (33) ◽  
pp. 34 ◽  
Author(s):  
Stefanie Lorke ◽  
Babette Scheres ◽  
Holger Schüttrumpf ◽  
Antje Bornschein ◽  
Reinhard Pohl

Flow processes like flow depths and flow velocities give important information about erosion and infiltration processes, which can lead to an unstable dike structure and consequently to dike failure. Up to now several physical model tests on wave run-up and wave overtopping are available to adjust and improve design formula for different dike structures. This kind of physical model tests have been performed in the here presented project FlowDike. Its main purpose is to consider two new aspects that could influence the assessment of wave run-up and wave overtopping as well as the flow processes on dikes which have not been investigated yet: longshore current and wind. Especially in estuaries and along coasts, the effect of tidal and storm induced currents combined with local wind fields can influence the incoming wave parameters at the dike toe as well as the wave run-up height, the wave overtopping rate and the flow processes on dikes. This paper will focus on these flow processes on dike slopes and dike crests on an 1:6 sloped dike influenced by oblique wave attack and longshore current.


1965 ◽  
Vol 8 (1) ◽  
pp. 141-151 ◽  
Author(s):  
Yuichi Iwagaki ◽  
Akira Shima ◽  
Masao Inoue

2020 ◽  
Vol 20 (3) ◽  
pp. 333-342
Author(s):  
Le Hai Trung ◽  
Dang Thi Linh ◽  
Tang Xuan Tho ◽  
Nguyen Truong Duy ◽  
Tran Thanh Tung

Seawalls have been erected to protect hundreds of towns and tourism areas stretching along the coast of Vietnam. During storm surges or high tides, wave overtopping and splash-up would often threaten the safety of infrastructures, traffic and residents on the narrow land behind. Therefore, this study investigates these wave-wall interactions via hydraulic small scale model tests at Thuyloi University. Remarkably, the structure models were shaped to have different seaward faces and bullnoses. The wave overtopping discharge and splash run-up height at seawalls with bullnose are significantly smaller than those without bullnose. Furthermore, the magnitude of these decreasing effects is quantitatively estimated.


1972 ◽  
Vol 1 (13) ◽  
pp. 108 ◽  
Author(s):  
Shoshichiro Nagai ◽  
Akira Takada

The quantitative relationships among run-up, overtopping and reflection of waves are presented in this paper. In addition, the authors have proposed several empirical relationships to calculate the height of wave run-up and the quantity of wave overtopping in the region of standing waves.


Sign in / Sign up

Export Citation Format

Share Document