scholarly journals RELATIONS BETWEEN THE RUN-UP AND OVERTOPPING OF WAVES

1972 ◽  
Vol 1 (13) ◽  
pp. 108 ◽  
Author(s):  
Shoshichiro Nagai ◽  
Akira Takada

The quantitative relationships among run-up, overtopping and reflection of waves are presented in this paper. In addition, the authors have proposed several empirical relationships to calculate the height of wave run-up and the quantity of wave overtopping in the region of standing waves.

2012 ◽  
Vol 1 (33) ◽  
pp. 34 ◽  
Author(s):  
Stefanie Lorke ◽  
Babette Scheres ◽  
Holger Schüttrumpf ◽  
Antje Bornschein ◽  
Reinhard Pohl

Flow processes like flow depths and flow velocities give important information about erosion and infiltration processes, which can lead to an unstable dike structure and consequently to dike failure. Up to now several physical model tests on wave run-up and wave overtopping are available to adjust and improve design formula for different dike structures. This kind of physical model tests have been performed in the here presented project FlowDike. Its main purpose is to consider two new aspects that could influence the assessment of wave run-up and wave overtopping as well as the flow processes on dikes which have not been investigated yet: longshore current and wind. Especially in estuaries and along coasts, the effect of tidal and storm induced currents combined with local wind fields can influence the incoming wave parameters at the dike toe as well as the wave run-up height, the wave overtopping rate and the flow processes on dikes. This paper will focus on these flow processes on dike slopes and dike crests on an 1:6 sloped dike influenced by oblique wave attack and longshore current.


2012 ◽  
Vol 1 (33) ◽  
pp. 65 ◽  
Author(s):  
Jentsje Van der Meer ◽  
Yvo Provoost ◽  
Gosse Jan Steendam

The idea of the Wave Run-up Simulator is based on the experiences with the Wave Overtopping Simulator. It is possible to simulate wave tongues overtopping a dike crest in reality. It must also be possible to simulate waves in the run-up and run-down zone of the seaward slope. This is the zone after waves have broken and when they rush-up the slope. The present paper describes this new idea of the Wave Run-up Simulator, why it is useful to develop the machine, to perform research with it and to develop a prediction method for slope strength. In fact, a prediction method can already be developed from the Cumulative Overload Method, which was developed on the basis of results with the Wave Overtopping Simulator, see Van der Meer et al. (2010). It also means that tests on the seaward slope will be done for validation purposes only. The paper describes in detail what is known about the movement of waves in this run-up zone and what actually the Wave Run-up Simulator has to simulate. Not a lot of research has been performed to describe the wave run-up process in detail, physically nor statistically. Finally, the pilot test has been described including hydraulic measurements on the slope.


1965 ◽  
Vol 8 (1) ◽  
pp. 141-151 ◽  
Author(s):  
Yuichi Iwagaki ◽  
Akira Shima ◽  
Masao Inoue

2020 ◽  
Vol 20 (3) ◽  
pp. 333-342
Author(s):  
Le Hai Trung ◽  
Dang Thi Linh ◽  
Tang Xuan Tho ◽  
Nguyen Truong Duy ◽  
Tran Thanh Tung

Seawalls have been erected to protect hundreds of towns and tourism areas stretching along the coast of Vietnam. During storm surges or high tides, wave overtopping and splash-up would often threaten the safety of infrastructures, traffic and residents on the narrow land behind. Therefore, this study investigates these wave-wall interactions via hydraulic small scale model tests at Thuyloi University. Remarkably, the structure models were shaped to have different seaward faces and bullnoses. The wave overtopping discharge and splash run-up height at seawalls with bullnose are significantly smaller than those without bullnose. Furthermore, the magnitude of these decreasing effects is quantitatively estimated.


2012 ◽  
Vol 1 (33) ◽  
pp. 49 ◽  
Author(s):  
Panayotis Prinos ◽  
Maria Tsakiri ◽  
Dimitris Souliotis

Wave overtopping and the propagation of the waves on the crest and the landward slope of a coastal dike is investigated numerically. Wave overtopping conditions are simulated using the concept of the Wave Overtopping Simulator (WOS). Two numerical models of the WOS are constructed using the FLUENT 6.0.12 (FLUENT Inc. 2001) and the FLOW 3D 9.4 (FLOW 3D 2010) CFD codes. The former simulates the WOS without accounting for air entrainment while the latter accounts for air entrainment. The unsteady RANS equations, the RNG k-ε turbulence model and the VOF method are solved numerically, for "tracking" the free surface and the head of the "current" from the dike crest to the landward dike slope. The computed results from the two models are compared with each other and also against field measurements and proposed empirical relationships (Van der Meer et al. 2010).


2013 ◽  
Vol 405-408 ◽  
pp. 1463-1471 ◽  
Author(s):  
Xing Ye Ni ◽  
Wei Bin Feng

To obtain a more detailed description of wave overtopping, a 2-D numerical wave tank is presented based on an open-source SPH platform named DualSPHysics, using a source generation and absorption technology suited for SPH methods with analytical relaxation approach. Numerical simulation of regular wave run-up and overtopping on typical sloping dikes is carried out and satisfactory agreements are shown between numerical results and experimental data. Another overtopping simulation of regular wave is conducted against six different types of seawalls (vertical wall, curved wall, recurved wall, 1:3 slope with smooth face, 1:1.5 slope with smooth face and 1:1.5 slope with stepped-face), which represents the details of various breaking waves interacting with different seawalls, and the average deviation of wave overtopping rate is 6.8%.


Sign in / Sign up

Export Citation Format

Share Document