scholarly journals GEOMETRIC CHARACTERISTICS OF WAVE-GENERATED SAND RIPPLES: A FULL-SCALE EXPERIMENTAL STUDY

Author(s):  
Dongxu Wang ◽  
Jing Yuan ◽  
Ole S. Madsen

In the coastal environment, wave-induced sand ripples are usually observed under moderate near-bed flow conditions. Their occurrence significantly changes the local hydrodynamics and sediment transport processes. Over the past few decades, some solid progresses have been made towards understating the ripple dimensions under wave-generated near-bed flows, e.g., O'Donoghue et al. [2006], but very few studies are targeted on the more detailed geometric characteristics, e.g., the generic shape of ripples and the sharpness of ripple crests, which are closely related to the coherent vortex structures. This study is aimed at filling this knowledge gap.

2014 ◽  
Vol 56 (2) ◽  
pp. 1450008-1-1450008-21 ◽  
Author(s):  
Tomoaki Nakamura ◽  
Yuta Nezasa ◽  
Yong-Hwan Cho ◽  
Ryo Ishihara ◽  
Norimi Mizutani

Author(s):  
ZHUBIN CAO ◽  
CHI ZHANG ◽  
HONGSHUAI QI ◽  
YAO ZHANG ◽  
JINHAI ZHENG ◽  
...  

2011 ◽  
Vol 58 (11) ◽  
pp. 1072-1088 ◽  
Author(s):  
Xin Chen ◽  
Yong Li ◽  
Xiaojing Niu ◽  
Daoyi Chen ◽  
Xiping Yu

2019 ◽  
Vol 80 (11) ◽  
pp. 2141-2147 ◽  
Author(s):  
Maryam Alihosseini ◽  
Sveinung Sægrov ◽  
Paul Uwe Thamsen

Abstract Numerical and experimental investigations were undertaken to study sediment transport under steady flow conditions and under flush waves in sewer pipes. Experiments were carried out with sand and gravel of different size distributions under smooth and rough bed conditions. Moreover, different hydraulic boundary conditions were investigated for flush waves. The numerical part of this study was carried out in the computational fluid dynamics (CFD) software ANSYS Fluent, which is two-way coupled to the Discrete Element Method (DEM) software EDEM. The main focus of this study is to determine if the CFD-DEM coupled method could reasonably predict the behaviour of sediments in sewers and thus be used for studying various features of sediment transport that are not easy to determine in laboratory experiments or in-situ measurements. Furthermore, it is important to replace the traditional empirical approaches developed for fluvial conditions with new methodologies, which are able to consider the high number of variables involved in sediment transport in sewers. The numerical model was validated with laboratory experiments and used to study details of sediment transport processes in sewers.


Geomorphology ◽  
2020 ◽  
Vol 363 ◽  
pp. 107211
Author(s):  
Pan Zhang ◽  
Wenyi Yao ◽  
Guobin Liu ◽  
Peiqing Xiao ◽  
Weiying Sun

2019 ◽  
Vol 8 (2) ◽  
pp. 2439-2446

This experimental study examines the variation of scour depth with time of Clearwater scour condition around compound circular bridge piers for steady flow conditions. Most of the circular bridge piers are resting on the bigger diameter caissons known as the compound circular bridge piers and are widely used in India for construction of road and railways bridge across the rivers. In past studies, it has been observed that most bridge failure occurs because of scouring due to flowing water around a bridge pier across a river. Most of the past studies were done on the uniform bridge pier and a very few studies have been done so far on scouring around non-uniform bridge piers. Estimation of scour depth is required for the economical and a sound design of bridge pier foundation. In present study, an experimental investigation has been done in a tilting flume for computation of rate of change of depth of scour with time at two different models of compound circular bridge piers by varying the foundation top position with respect to level of bed, i.e., 1. The foundation top at the level of bed, and 2. The foundation top below the level of bed (viz. 10mm, 20mm, 30mm and 40mm) for uniform sediments.


Sign in / Sign up

Export Citation Format

Share Document