Provisioning of Data Security for File Transformation on Multi Cloud Storage

Author(s):  
Nandhini M ◽  
Dr. Madhavi S
2014 ◽  
Vol 556-562 ◽  
pp. 5591-5596
Author(s):  
Yi Jie Fan ◽  
Zhen Qiao ◽  
Ming Zhong Xiao

We present a cross-cloud storage architecture that protects both user’s data and privacy from cloud providers or potential adversaries by leveraging the concept of Oblivious RAM on a logical layer. Our architecture allows users to conceal reading/writing operations and access sequences from clouds in order to prevent the leakage of access patterns, which may be a threat to data security. In addition, an anonymity preserving mechanism applied in our architecture makes it difficult to track users' data or confirm users' identities, which can effectively protect users' privacy. One Cloud, the proof-of-concept prototype of our architecture integrates four major cloud storage services and implements all key techniques we proposed in our architecture. We deploy it in a real-world network environment to analyze and evaluate the performance and the scalability of our architecture.


Author(s):  
He Kai ◽  
Huang Chuanhe ◽  
Wang Jinhai ◽  
Zhou Hao ◽  
Chen Xi ◽  
...  

2019 ◽  
Vol 13 (4) ◽  
pp. 356-363
Author(s):  
Yuezhong Wu ◽  
Wei Chen ◽  
Shuhong Chen ◽  
Guojun Wang ◽  
Changyun Li

Background: Cloud storage is generally used to provide on-demand services with sufficient scalability in an efficient network environment, and various encryption algorithms are typically applied to protect the data in the cloud. However, it is non-trivial to obtain the original data after encryption and efficient methods are needed to access the original data. Methods: In this paper, we propose a new user-controlled and efficient encrypted data sharing model in cloud storage. It preprocesses user data to ensure the confidentiality and integrity based on triple encryption scheme of CP-ABE ciphertext access control mechanism and integrity verification. Moreover, it adopts secondary screening program to achieve efficient ciphertext retrieval by using distributed Lucene technology and fine-grained decision tree. In this way, when a trustworthy third party is introduced, the security and reliability of data sharing can be guaranteed. To provide data security and efficient retrieval, we also combine active user with active system. Results: Experimental results show that the proposed model can ensure data security in cloud storage services platform as well as enhance the operational performance of data sharing. Conclusion: The proposed security sharing mechanism works well in an actual cloud storage environment.


Author(s):  
Leonel Moyou Metcheka ◽  
René Ndoundam

AbstractClassical or traditional steganography aims at hiding a secret in cover media such as text, image, audio, video or even in network protocols. Recent research has improved this approach called distributed steganography by fragmenting the secret message and embedding each secret piece into a distinct cover media. The major interest of this approach is to make the secret message detection extremely difficult. However, these file modifications leave fingerprints which can reveal a secret channel to an attacker. Our contribution is a new steganography paradigm transparent to any attacker and resistant to the detection and the secret extraction. Two properties contribute to achieve these goals: the files do not undergo any modification while the distribution of the secret in the multi-cloud storage environment allows us to hide the existence of the covert channel between the communicating parties. Information’s are usually hidden inside the cover media. In this work, the covert media is a pointer to information. Therefore the file carries the information without being modified and the only way to access it is to have the key. Experiments show interesting comparison results with remarkable security contributions. The work can be seen as a new open direction for further research in the field.


Author(s):  
Cheng Zhang ◽  
Yang Xu ◽  
Yupeng Hu ◽  
J. Wu ◽  
Ju Ren ◽  
...  

2017 ◽  
Vol 30 (16) ◽  
pp. e3324 ◽  
Author(s):  
Laicheng Cao ◽  
Wenwen He ◽  
Yufei Liu ◽  
Xian Guo ◽  
Tao Feng

Author(s):  
Maxim Deryabin ◽  
Nikolay Chervyakov ◽  
Andrei Tchernykh ◽  
Mikhail Babenko ◽  
Nikolay Kucherov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document