Application of High Pressure Die Casting Process on Magnesium Alloy to the Big-Scale Automotive Parts and its Task in the Near Future

2007 ◽  
Vol 48 (556) ◽  
pp. 390-395
Author(s):  
Toru YAMADA
2013 ◽  
Vol 773-774 ◽  
pp. 887-893
Author(s):  
Pongsak Dulyapraphant ◽  
Ekkachai Kittikhewtraweeserd ◽  
Nipon Denmud ◽  
Prarop Kritboonyarit ◽  
Surasak Suranuntchai

With an increasing pressure on automotive weight reduction, the demand on the lighter weight automotive components continues to increase. In recent years, squeeze casting processes have been used with different aluminium alloys to produce high integrity automotive parts. In this study, the indirect squeeze casting processes is adopted to cast a motorcycles component originally produced by a high pressure die casting process using aluminium alloy ADC12. To minimize amount of gas porosity inside squeeze casts, concepts of (1) minimization of ingate velocity along with (2) bottom filling pattern during the die filling, and (3) maximization of intensifications casting pressure are applied. Then parts are casted with both conventional high pressure die casting and indirect squeeze casting processes. Comparative evaluation of mechanical properties was made between HPDC casts and squeeze casts both in as-cast and heat treated conditions. Results from the experiment have shown that squeeze casts can pass the blister test at 490 °C for 2.5 hours. Then, squeeze casts are heat treated by solution treatment at 484 °C for 20 minutes and artificial age at 190 °C for 2.5 hours, respectively. This improves UTS of the heat treated squeeze cast to 254.14 MPa with 1.84% of elongation, while the UTS of as cast condition from both processes is not significantly different.


Author(s):  
M. Imad Khan ◽  
Saeid Nahavandi ◽  
Yakov Frayman

This chapter presents the application of a neural network to the industrial process modeling of high-pressure die casting (HPDC). The large number of inter- and intradependent process parameters makes it difficult to obtain an accurate physical model of the HPDC process that is paramount to understanding the effects of process parameters on casting defects such as porosity. The first stage of the work was to obtain an accurate model of the die-casting process using a feed-forward multilayer perceptron (MLP) from the process condition monitoring data. The second stage of the work was to find out the effect of different process parameters on the level of porosity in castings by performing sensitivity analysis. The results obtained are in agreement with the current knowledge of the effects of different process parameters on porosity defects, demonstrating the ability of the MLP to model the die-casting process accurately.


2019 ◽  
Vol 104 ◽  
pp. 177-188 ◽  
Author(s):  
Dorra Abid ◽  
Ahmed Ktari ◽  
Dhouha Mellouli ◽  
Nedia Gafsi ◽  
Nader Haddar

Sign in / Sign up

Export Citation Format

Share Document