squeeze casting
Recently Published Documents


TOTAL DOCUMENTS

692
(FIVE YEARS 142)

H-INDEX

36
(FIVE YEARS 8)

2022 ◽  
Vol 327 ◽  
pp. 189-196
Author(s):  
Le Cheng ◽  
Hong Xing Lu ◽  
Min Luo ◽  
Xing Gang Li ◽  
Wan Peng Zhang ◽  
...  

The evolution of the microstructure of A356.2 alloys prepared by the rheocasting and squeeze casting during solution heat treatment was investigated. In contrast with the conventional solution heat treatment process (3 hours at 540oC), a short time solution treatment process (less than 1 hour at 540oC) is applied in this paper. The results show that the rheocastings require a shorter solution time than the squeeze-castings to obtain spheroidized Si particles. After solution for 10 min, the X-ray diffraction inspection results show that the Mg2Si phase completely is dissolved in both rheocastings and squeeze-castings. However, a small amount of Mg2Si is found at the edge of the Si particle by scanning electron microscope observation. After solution for more than 20 min, the Mg2Si phase is completely dissolved. Fe-rich phases, including AlSiFeMg and AlFeSi, exist throughout the solution process. The developed T6 heat treatment with a short solution time can effectively improve production efficiency and decrease process cost for the rheocasting process. Key words: A356.2 alloy, microstructure, short solution time, rheocasting, squeeze casting


2022 ◽  
Vol 327 ◽  
pp. 156-162
Author(s):  
Yong Kun Li ◽  
Pei Lin Cai ◽  
Zhi Long He ◽  
Rong Feng Zhou ◽  
Lu Li ◽  
...  

It is easy to form reverse segregation and shrinkage porosity defects during the solidification of CuSn10P1 alloy, which leads to the poor properties and limits its application in high strength and toughness parts. In this paper, semi-solid CuSn10P1 alloy slurry was prepared by enclosed cooling slope channel (for short ECSC). The effect of runner distance on microstructure and properties by liquid squeeze casting and semi-solid squeeze casting was studied. The results showed that the microstructure of semi-solid squeeze casting is finer than that of liquid squeeze casting, and the shrinkage defects are improved. The solid fraction with 65 mm runner is lower than that without runner in liquid squeeze casting and semi-solid squeeze casting due to the retention effect of solid phase in semi-solid slurry flow, but the properties with 65 mm runner is better than that without runner. The ultimate tensile strength, yield strength and elongation of semi-solid squeeze casting CuSn10P1 alloy with 65 mm runner distance reached 466.5 MPa, 273.6 MPa and 13.4%, which were improved by 26%, 19% and 97%, respectively, as compared to that of liquid squeeze casting.


2021 ◽  
Vol 38 (3−4) ◽  
Author(s):  
N.D. Malleswararao.K ◽  
I.N. Niranjan Kumar ◽  
BH. Nagesh

Dry, lubrication (SAE15W40), and coated (DLC-Star) reciprocating tribological tests on rapid solidified AlSi17Cu3.5-4Mg0.6-0.8 alloy was conducted using a high frequency linear reciprocating rig (HFRR) at ambient temperature. The alloy fabricated with the rheo-stir squeeze casting procedure under T-6 condition. However, at different loading (0-30 N) conditions, wear and friction properties of rapid solidified H-Al-17Si alloy are investigated. It is observed that the lower friction coefficient value obtained for DLC-Star coated H-Al-17Si alloy compared to dry and lubrication conditions. Though, for dry and lubricated sliding, the obtained wear coefficient values are 2.9X10-3 mm3/N.m and 4.0X10-4 mm3/N.m. A lower coefficient of wear value of 5.4X10-5 mm3/N.m was recorded with DLC-star coating under dry conditions. The alloy wear coefficient values first increases with applied load (up to 20 N) and then decreases (20 N to 30 N). EDS, AFM surface roughness profilometer, SEM, and advanced metallurgical microscope (AMM) analysis techniques used for the characterization of surface morphologies. The developments in friction and wear coefficients were fundamentally ascribed to the dispersion and size of primary Si elements and the development of tribo-oxide films on the rapid solidified AlSi17 alloy coated (DLC-Star) surfaces.


This work presents experimental analysis to determine the effect of sand and squeeze casting methods on the Tensile and Hardness properties of AA6063 Aluminium. Sand and squeeze cast moulds were fabricated and used to produce Aluminium rods. The test samples from cast rods were subjected to Tensile and Hardness tests. The results obtained showed better Tensile and Hardness properties, in the squeeze cast samples that were produced under varied pressure. The hardness of squeeze casting varied from 72.9 to 82.3Hv, while that of sand casting had 70.0Hv. Also, Ultimate Tensile Strength increased with increased pressure in squeeze castings from 178.01 to 194.04MPa and 161.97 in sand castings. Conversely, the mechanical properties of the cast products improved from those of sand casting to squeeze casting. Therefore, squeeze cast products could be used in as-cast condition in engineering applications requiring high quality parts while sand casting may be used in as-cast condition for non- engineering applications or engineering applications requiring less quality parts


Technologies ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 95
Author(s):  
Anders E. W. Jarfors ◽  
Jie Zhou ◽  
Andong Du ◽  
Jinchuan Zheng ◽  
Gegang Yu

Squeeze casting is a process that can produce the highest quality castings. In the current study, the effect of the process settings and the in-die conditions on rejection rates is studied through a full-scale experimental study. Factors affecting the as-cast part quality were investigated in the current study from two different viewpoints. The first part of the study was to investigate the influence of the process settings on the part rejection rate, and the second was to understand the conditions in the die and the effects on the part rejection rate to understand better the reasons and sensitivity of the squeeze casting process.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7261
Author(s):  
Shucong Xu ◽  
Lin Yuan ◽  
Lei Wang ◽  
Jinyu Li ◽  
Fuchang Xu ◽  
...  

The poor formability of high volume fraction whisker reinforced aluminum matrix composites of original squeeze casting is an important factor restricting its further development and application. Currently, there are no reports on the secondary forgeability of aluminum matrix composites of original squeeze casting, although some papers on its first forgeability are published. The secondary forgeability is very important for most metals. This study aims to investigate the secondary forgeability of aluminum matrix composites. In this study, the secondary upsetting experiments of 20 vol% SiCw + Al18B4O33w/2024Al composites, treated by the original squeeze casting and extrusion, were carried out. The first upsetting deformation is close to the forming limit, the secondary upsetting deformation under the same deformation conditions was carried out to investigate the secondary forgeability. The experimental results show that, unlike aluminum alloys, the 20 vol% SiCw + Al18B4O33w/2024Al composites at the original squeeze casting and extrusion states have no secondary forgeability due to the whisker rotating and breaking during the secondary upsetting. The high volume fraction whisker reinforced aluminum matrix composites of original squeeze casting cannot be formed by the multiple-forging method since the cavities and cracks caused by whisker fracture continue to expand during secondary processing, which leads to further extension of macroscopic cracks.


Sign in / Sign up

Export Citation Format

Share Document