Single Nucleotide Polymorphism (SNP) Discovery and Kompetitive Allele-Specific PCR (KASP) Marker Development with Korean Japonica Rice Varieties

2018 ◽  
Vol 6 (4) ◽  
pp. 391-403 ◽  
Author(s):  
Kyeong-Seong Cheon ◽  
Jeongho Baek ◽  
Young-il Cho ◽  
Young-Min Jeong ◽  
Youn-Young Lee ◽  
...  
Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1576
Author(s):  
Chad Brabham ◽  
Jason K. Norsworthy ◽  
Fidel González-Torralva

Benzobicyclon has shown varying results in controlling weedy rice, including those with imidazolinone (IMI) resistance. Tolerance to benzobicyclon in cultivated japonica rice, but not indica or aus-like cultivars, is conferred by a fully functional HPPD Inhibitor Sensitive 1 (HIS1) gene. Herein, a diagnostic Kompetitive Allele Specific PCR (KASP) assay was developed to predict the HIS1 genotype of weedy rice plants from 37 accessions and correlated to their response to benzobicyclon in the field. Two-thirds of the 693 weedy rice plants screened were tolerant to benzobicyclon (371 g ai ha−1, SC formulation) at 30 days after treatment (DAT). Thirty-four percent of plants were homozygous for the HIS1 allele and 98% of these plants exhibited field tolerance. However, the his1 genotype did not always correlate with field data. Only 52% of his1 plants were considered sensitive, indicating that the single nucleotide polymorphisms (SNPs) chosen in the KASP assay are not a reliable tool in predicting his1 homozygous plants. In an additional experiment, 86% of the 344 plants with at least one copy of the ALSS653N trait harbored a HIS1 allele, suggesting fields infested with IMI herbicide-resistant weedy rice are unlikely to be controlled with benzobicyclon.


2021 ◽  
Vol 12 ◽  
Author(s):  
Patrick Obia Ongom ◽  
Christian Fatokun ◽  
Abou Togola ◽  
Stella Salvo ◽  
Oluwaseye Gideon Oyebode ◽  
...  

Optimization of a breeding program for increased genetic gain requires quality assurance (QA) and quality control (QC) at key phases of the breeding process. One vital phase in a breeding program that requires QC and QA is the choice of parents and successful hybridizations to combine parental attributes and create variations. The objective of this study was to determine parental diversity and confirm hybridity of cowpea F1 progenies using KASP (Kompetitive Allele-Specific PCR)-based single nucleotide polymorphism (SNP) markers. A total of 1,436 F1 plants were derived from crossing 220 cowpea breeding lines and landraces to 2 elite sister lines IT99K-573-1-1 and IT99K-573-2-1 as male parents, constituting 225 cross combinations. The progenies and the parents were genotyped with 17 QC SNP markers via high-throughput KASP genotyping assay. The QC markers differentiated the parents with mean efficiency of 37.90% and a range of 3.4–82.8%, revealing unique fingerprints of the parents. Neighbor-Joining cladogram divided the 222 parents into 3 clusters. Genetic distances between parents ranged from 0 to 3.74 with a mean of 2.41. Principal component analysis (PCA) depicted a considerable overlap between parents and F1 progenies with more scatters among parents than the F1s. The differentiation among parents and F1s was best contributed to by 82% of the markers. As expected, parents and F1s showed a significant contrast in proportion of heterozygous individuals, with mean values of 0.02 and 0.32, respectively. KASP markers detected true hybridity with 100% success rate in 72% of the populations. Overall, 79% of the putative F1 plants were true hybrids, 14% were selfed plants, and 7% were undetermined due to missing data and lack of marker polymorphism between parents. The study demonstrated an effective application of KASP-based SNP assay in fingerprinting, confirmation of hybridity, and early detection of false F1 plants. The results further uncovered the need to deploy markers as a QC step in a breeding program.


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1531
Author(s):  
Kyeong-Seong Cheon ◽  
Young-Min Jeong ◽  
Hyoja Oh ◽  
Jun Oh ◽  
Do-Yu Kang ◽  
...  

Temperate japonica rice varieties exhibit wide variation in the phenotypes of several important agronomic traits, including disease resistance, pre-harvest sprouting resistance, plant architecture, and grain quality, indicating the presence of genes contributing to favorable agronomic traits. However, gene mapping and molecular breeding has been hampered as a result of the low genetic diversity among cultivars and scarcity of polymorphic DNA markers. Single nucleotide polymorphism (SNP)-based kompetitive allele-specific PCR (KASP) markers allow high-throughput genotyping for marker-assisted selection and quantitative trait loci (QTL) mapping within closely related populations. Previously, we identified 740,566 SNPs and developed 771 KASP markers for Korean temperate japonica rice varieties. However, additional markers were needed to provide sufficient genome coverage to support breeding programs. In this study, the 740,566 SNPs were categorized according to their predicted impacts on gene function. The high-impact, moderate-impact, modifier, and low-impact groups contained 703 (0.1%), 20,179 (2.7%), 699,866 (94.5%), and 19,818 (2.7%) SNPs, respectively. A subset of 357 SNPs from the high-impact group was selected for initial KASP marker development, resulting in 283 polymorphic KASP markers. After incorporation of the 283 markers with the 771 existing markers in a physical map, additional markers were developed to fill genomic regions with large gaps between markers, and 171 polymorphic KASP markers were successfully developed from 284 SNPs. Overall, a set of 1225 KASP markers was produced. The markers were evenly distributed across the rice genome, with average marker density of 3.3 KASP markers per Mbp. The 1225 KASP markers will facilitate QTL/gene mapping and marker-assisted selection in temperate japonica rice breeding programs.


Sign in / Sign up

Export Citation Format

Share Document