scholarly journals Mathematical Model for the Determination of Voltage and Current on Lossy Power Transmission Lines

2012 ◽  
Vol 1 (4) ◽  
pp. 16-18
Author(s):  
M.O. Oke M.O. Oke
2020 ◽  
Vol 23 (2) ◽  
pp. 16-19
Author(s):  
G. SHEINA ◽  

This paper investigates a mathematical model of one elements of the power supply system - power transmission lines. The type of models depends on the initial simplifications, which in turn are determined by the complexity of the physics of processes. The task of improving the accuracy of modeling of emergency processes in the power system is due to the significant complexity of modern power systems and their equipment, high-speed relay protection, automation of emergency management and the introduction of higher-speed switching equipment. One of the reasons for a significant number of serious emergencies in the system is the lack of complete and reliable information for modeling modes in the design and operation of power systems. The development of a mathematical model of a three-phase power line, which provides adequate reflection of both normal and emergency processes, is relevant. The advanced mathematical model of power transmission lines allows to investigate various operational modes of electric networks. The improved mathematical model of the power transmission line reflects all the features of physical processes at state modes and transient process and provides sufficient accuracy of the results. The type of mathematical model of power transmission lines depends on the accepted simplifications, depending on the task of research. The purpose of this work is to analyze the mathematical model of the power transmission line to study the modes of operation of the power supply system, with the possibility of its application to take into account all the design features of overhead and cable power lines. The mathematical model of the power line for the study of the modes of operation of the power supply system is analyzed. It is used to take into account the design features of overhead and cable power lines, skin effect.


2018 ◽  
Vol 22 (6) ◽  
pp. 129-136
Author(s):  
Nadezhda Buryanina ◽  
◽  
Yuri Korolyuk ◽  
Elena Lesnykh ◽  
Konstantin Suslov ◽  
...  

2013 ◽  
Vol 380-384 ◽  
pp. 3425-3428
Author(s):  
Guang Zu Ge ◽  
Bo Tang ◽  
Jian Xiong Zhu ◽  
Yin Huang ◽  
Zi Hang Qu

Resolving the contradiction between trees and power transmission lines in time is an important work to ensure the safety of transmission line operation. While it is difficult to decide the trees trimmed time during the transmission line operation and maintenance, the development of the management information system for protecting distance between transmission lines and trees, which is used to auxiliary predict the date of pruning, is a way to solve the problem. Collected attribute data of transmission lines and trees, the corresponding database is established. Therefore, Visual Basic 6.0 is adopted to develop the software system. Based on the spatial coordinates of line towers, conductors, and tree crown, the three-dimensional mathematical model is established to calculate the spatial distance between the conductor and tree crown. According to the mathematical model, the trees growth rate of year, month and day, respectively, and the protecting distance standard between conductor and tree crown, the system could calculate the actual spatial distance between conductor and tree crown, and auxiliary predict the pruning date.


2020 ◽  
Vol 220 ◽  
pp. 01071
Author(s):  
Dmitry Ivanov ◽  
Marat Sadykov ◽  
Aleksandr Golenishchev-Kutuzov ◽  
Danil Yaroslavsky ◽  
Tatyana Galieva ◽  
...  

The length of overhead power transmission lines in the Russian Federation is over 2.8 million kilometers. Power grids are rapidly becoming obsolete. The level of deterioration of the equipment achieves 70% [1]. This leads to breakdowns on overhead power transmission lines and reduce the quality of electricity supply. One of the focus areas towards improving the situation is a deep modernization of the power grid with an orientation on energy efficiency. The purpose of this work is the creation a system for operative monitoring of the technical condition of high-voltage power-transmission lines based on modular devices. The modular device is configured depending on the issues at hand: control of ice formation; control of ice melting; localization of the place of short circuit, breakage, lightning strike; determination of electrical loads on the wire or control of the load of overhead power transmission lines; determination of mechanical loads at the wire suspension point; determination of conditions for the occurrence of ice formation, determination of defects in insulators. This will equip the overhead line diagnostic systems without serious financial costs by simple installation on the wire of the developed device which design allows to change the configuration of the equipment and solve a wide range of tasks.


2019 ◽  
Vol 84 ◽  
pp. 02005
Author(s):  
Marek Lis ◽  
Andriy Chaban ◽  
Andrzej Szafraniec ◽  
Radosław Figura ◽  
Vitaliy Levoniuk

In the paper, based on interdisciplinary approaches to modeling, a mathematical model of a part of an opened extra-high voltage electrical grid, which key elements are two long power transmission lines with distributed constants is presented. Within this framework the analysis of transient processes in power transmission lines in a single-line arrangement is carried out. The results of transient processes are displayed by means of figures; they are under ongoing research.


2021 ◽  
pp. 231-237
Author(s):  
Elena Shlyakhova ◽  
Irina Serebryanaya ◽  
Inna Egorochkina ◽  
Andrey Matrosov ◽  
Maxim Orlov

Sign in / Sign up

Export Citation Format

Share Document