Reservoir Operations Applying Discrete Hedging Rule Curves Depending on Current Storage to Cope with Droughts

2017 ◽  
Vol 17 (1) ◽  
pp. 107-115 ◽  
Author(s):  
Youngkyu Jin ◽  
◽  
Sangho Lee ◽  
Taehun Jung ◽  
◽  
...  
Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2737
Author(s):  
Ehsan Mostaghimzadeh ◽  
Seyed Mohammad Ashrafi ◽  
Arash Adib ◽  
Zong Woo Geem

Today, variable flow pattern, which uses static rule curves, is considered one of the challenges of reservoir operation. One way to overcome this problem is to develop forecast-based rule curves. However, managers must have an estimate of the influence of forecast accuracy on operation performance due to the intrinsic limitations of forecast models. This study attempts to develop a forecast model and investigate the effects of the corresponding accuracy on the operation performance of two conventional rule curves. To develop a forecast model, two methods according to autocorrelation and wrapper-based feature selection models are introduced to deal with the wavelet components of inflow. Finally, the operation performances of two polynomial and hedging rule curves are investigated using forecasted and actual inflows. The results of applying the model to the Dez reservoir in Iran visualized that a 4% improvement in the correlation coefficient of the coupled forecast model could reduce the relative deficit of the polynomial rule curve by 8.1%. Moreover, with 2% and 10% improvement in the Willmott and Nash—Sutcliffe indices, the same 8.1% reduction in the relative deficit can be expected. Similar results are observed for hedging rules where increasing forecast accuracy decreased the relative deficit by 15.5%. In general, it was concluded that hedging rule curves are more sensitive to forecast accuracy than polynomial rule curves are.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 1995
Author(s):  
Alireza B. Dariane ◽  
Mohammad M. Sabokdast ◽  
Farzane Karami ◽  
Roza Asadi ◽  
Kumaraswamy Ponnambalam ◽  
...  

In this paper, a many-objective optimization algorithm was developed using SPEA2 for a system of four reservoirs in the Karun basin, including hydropower, municipal and industrial, agricultural, and environmental objectives. For this purpose, using 53 years of available data, hedging rules were developed in two modes: with and without applying fuzzy logic. SPEA2 was used to optimize hedging coefficients using the first 43 years of data and the last 10 years of data were used to test the optimized rule curves. The results were compared with those of non-hedging methods, including the standard operating procedures (SOP) and water evaluation and planning (WEAP) model. The results indicate that the combination of fuzzy logic and hedging rules in a many-objectives system is more efficient than the discrete hedging rule alone. For instance, the reliability of the hydropower requirement in the fuzzified discrete hedging method in a drought scenario was found to be 0.68, which is substantially higher than the 0.52 from the discrete hedging method. Moreover, reduction of the maximum monthly shortage is another advantage of this rule. Fuzzy logic reduced 118 million cubic meters (MCM) of deficit in the Karun-3 reservoir alone. Moreover, as expected, the non-hedging SOP and WEAP model produced higher reliabilities, lower average storages, and less water losses through spills.


1995 ◽  
Vol 82 (1) ◽  
pp. 163-175 ◽  
Author(s):  
Jhih-Shyang Shih ◽  
Charles ReVelle

Sign in / Sign up

Export Citation Format

Share Document